• 제목/요약/키워드: intelligent vision

검색결과 465건 처리시간 0.026초

실내 환경에서 모서리 특징을 이용한 시각 집중 기반의 SLAM (Visual-Attention Using Corner Feature Based SLAM in Indoor Environment)

  • 신용민;이주호;서일홍;최병욱
    • 전자공학회논문지SC
    • /
    • 제49권4호
    • /
    • pp.90-101
    • /
    • 2012
  • 단일 카메라 기반의 SLAM(Simultaneous Localization and Mapping)을 성공적으로 수행하기 위해서는 표식 선택이 매우 중요하다. 특히, 미지의 환경에서는 표식에 대한 사정정보가 없기 때문에 표식을 자동 선택하는 기술이 필요하다. 본 논문에서는 표식을 자동 선택하기 위해 인간의 시각 집중 방식을 모델링한 시각 집중 시스템을 이용한다. 기존의 시각 집중 시스템에서 윤곽선(Edge)는 시각 집중을 위한 중요한 요소 중 하나이다. 하지만 복잡한 실내 환경에서 윤곽선의 응답을 사용할 경우 정규화 연산으로 인해 정보가 많은 복잡한 영역의 윤곽선에 대한 응답은 낮아지고 특징이 없는 평면이나 평면들 간의 경계에서 높은 값을 가지게 된다. 또한 네 방향에 대한 응답 값을 사용하기 때문에 특징의 차원수가 증가해서 연산량도 증가한다. 본 논문에서는 앞에서 언급한 문제점들을 해결하기 위해 모서리 특징의 사용을 제안한다. 모서리 특징을 사용함으로써 정보가 많은 복잡한 영역을 우선 집중시켜 데이터 연관(Data association)의 정확도도 높일 수 있다. 최종적으로는 코너특징을 사용한 시각 집중 시스템을 이용함으로써 기존 방식보다 SLAM 결과가 향상 된다는 것을 실험으로 보이도록 하겠다.

교육청 소속 공공도서관의 새로운 방향 모색 - 충남교육청 공공도서관의 교육기능 강화를 중심으로 - (A New Direction for the Public Libraries Affiliated with Office of Education: building up the educational functions of public libraries affiliated to the Chungcheongnam-do Office of Education)

  • 이병기;김혜진;오영옥;임정훈;이미화
    • 한국도서관정보학회지
    • /
    • 제52권2호
    • /
    • pp.107-126
    • /
    • 2021
  • 4차산업혁명에 따라 새로운 교육 환경이 도래하는 상황 속에서 충청남도 교육청 소속 19개 공공도서관의 활성화를 위한 새로운 방향을 모색하기 위해 현황분석과 사서, 사서교사, 전문가 대상 포커스그룹인터뷰를 실시하였다. 연구방법을 통해 충청남도 교육청 소속 공공도서관의 비전으로 도서관 커뮤니티 스쿨을 통한 지식체험 에듀라이브러리를 설정하였다. 에듀라이브러리로서 공공도서관 서비스의 방향을 교육기능 특화 서비스, 생애주기 맞춤 서비스, 지식체험중심서비스, 4차산업혁명 지능정보사회 서비스로 나누어 살펴보았다. 도서관의 전통적 기능을 바탕으로 미래 공공도서관이 갖추어야 할 공간을 체험학습 공간으로 제시하였다. 본 연구에서 충남교육청 소속 도서관의 교육기능을 강화한 특화된 방향을 제시하였는데 이는 학교 및 학교도서관과 협력 방안 모색에 기여할 수 있을 것이며, 타 지역 교육청 소속 도서관의 방향성 마련에 기반을 제공할 수 있을 것이다.

반려동물용 자동 사료급식기의 비용효율적 사료 중량 예측을 위한 딥러닝 방법 (A Deep Learning Method for Cost-Effective Feed Weight Prediction of Automatic Feeder for Companion Animals)

  • 김회정;전예진;이승현;권오병
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.263-278
    • /
    • 2022
  • 최근 IoT 기술의 발달로 외출 중에도 반려동물에 급여하도록 자동 사료급식기가 유통되고 있다. 그러나 자동급식에서 중요한 중량을 측정하는 저울 방식은 쉽게 고장이 나고, 3D카메라 방식은 비용이 든다는 단점이 있으며, 2D카메라 방식은 중량 측정의 정확도가 떨어진다. 특히 사료가 복합된 경우 중량 측정 문제는 더욱 어려워질 수 있다. 따라서 본 연구의 목적은 2D카메라를 사용하면서도 중량을 정확하게 추정할 수 있는 딥러닝 접근법을 제안하는 것이다. 이를 위해 다양한 합성곱 신경망을 이용하였으며, 그중 ResNet101 기반 모델이 3.06 gram의 평균 절대 오차와 3.40%의 평균 절대비 오차를 기록하며 가장 우수한 성능을 보였다. 본 연구의 결과로 사료와 같이 규격화된 물체의 중량을 확보가 용이한 2D 이미지를 통해서만 예측할 필요가 있을 경우 유용한 정보로 활용될 수 있다.

위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안 (A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates)

  • 장성민;이정우;박종혁
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.57-74
    • /
    • 2022
  • 최근 인공지능 주차관제시스템은 딥러닝을 활용해 차량 번호판에 대한 인식률을 높이고 있지만 위조번호판 부착 차량을 판별하지 못한다는 문제점이 있다. 이러한 보안상의 문제점이 있음에도 불구하고 현재까지 여러 기관에서 기존의 시스템을 그대로 사용하고 있는 상황이다. 실례로 위조번호판을 이용한 실험에서 정부의 주요 기관을 대상으로 진입에 성공한 사례도 있다. 본 논문에서는 이러한 위조번호판을 부착한 차량의 출입을 방지하기 위해서 기존 인공지능 주차관제시스템의 개선 방안을 제시한다. 이를 위해 제안하는 방법은 기존 시스템이 차량의 번호판의 일치여부를 통과기준으로 사용하듯이 이미지에서 특징이 되는 특징점의 정보를 추출해내는 ORB 알고리즘을 활용하여 추출한 차량 앞면 특징점들의 매칭 정도를 통과기준으로 사용하는 방법이다. 또한 내부에 차량이 존재하는지 여부를 확인하는 절차를 제안 시스템에 포함시켜 위조번호판을 부착한 동일 차종 차량의 진입도 방지하였다. 실험 결과, 위조번호판을 부착한 차량들의 진입을 막아내며 기존시스템에 비해 위조번호판을 막아내는 개선된 성능을 보였다. 이러한 결과를 통해 기존 인공지능 주차관제시스템의 체계를 유지하면서 본 논문에서 제안하는 방법들을 기존의 주차관제시스템에 적용하여 위조번호판을 부착한 차량의 출입을 방지할 수 있음을 확인할 수 있었다.

얼굴 특징점을 활용한 영상 편집점 탐지 (Detection of video editing points using facial keypoints)

  • 나요셉;김진호;박종혁
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.15-30
    • /
    • 2023
  • 최근 미디어 분야에도 인공지능(AI)을 적용한 다양한 서비스가 등장하고 있는 추세이다. 하지만 편집점을 찾아 영상을 이어 붙이는 영상 편집은, 대부분 수동적 방식으로 진행되어 시간과 인적 자원의 소요가 많이 발생하고 있다. 이에 본 연구에서는 Video Swin Transformer를 활용하여, 발화 여부에 따른 영상의 편집점을 탐지할 수 있는 방법론을 제안한다. 이를 위해, 제안 구조는 먼저 Face Alignment를 통해 얼굴 특징점을 검출한다. 이와 같은 과정을 통해 입력 영상 데이터로부터 발화 여부에 따른 얼굴의 시 공간적인 변화를 모델에 반영한다. 그리고, 본 연구에서 제안하는 Video Swin Transformer 기반 모델을 통해 영상 속 사람의 행동을 분류한다. 구체적으로 비디오 데이터로부터 Video Swin Transformer를 통해 생성되는 Feature Map과 Face Alignment를 통해 검출된 얼굴 특징점을 합친 후 Convolution을 거쳐 발화 여부를 탐지하게 된다. 실험 결과, 본 논문에서 제안한 얼굴 특징점을 활용한 영상 편집점 탐지 모델을 사용했을 경우 분류 성능을 89.17% 기록하여, 얼굴 특징점을 사용하지 않았을 때의 성능 87.46% 대비 성능을 향상시키는 것을 확인할 수 있었다.

링크드 데이터를 이용한 협업적 비디오 어노테이션 및 브라우징 시스템 (A Collaborative Video Annotation and Browsing System using Linked Data)

  • 이연호;오경진;신위살;조근식
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.203-219
    • /
    • 2011
  • 최근 인터넷이 가능한 컴퓨터뿐만 아니라 스마트TV, 스마트폰과 같은 장치를 통한 동영상 형태의 멀티미디어 소비가 증가함에 따라 단순히 시청만 하는 것이 아니라 동영상 콘텐츠 사용자들은 자신이 원하는 동영상 콘텐츠를 찾거나 동영상 콘텐츠에 등장하는 객체의 부가 정보를 브라우징 하고자 하는 요구가 증대되고 있다. 이러한 사용자의 요구를 충족시키기 위해서는 노동집약적인 어노테이션 작업이 불가피하다. 동영상 콘텐츠에 등장하는 객체에 직접 부가정보를 기술하는 키워드 기반 어노테이션 연구에서는 객체에 대한 관련 정보들을 어노테이션 데이터에 모두 포함시켜 대용량 데이터를 개별적으로 직접 관리해야 한다. 이러한 어노테이션 데이터를 이용하여 브라우징을 할 때, 어노테이션 데이터에 이미 포함 되어 있는 정보만 제한적으로 검색이 된다는 단점을 가지고 있다. 또한, 기존의 객체 기반 어노테이션에서는 어노테이션 작업량을 줄이기 위해 객체 검출 및 인식, 트래킹 등의 컴퓨터 비전 기술을 적용한 자동 어노테이션을 시도하고 있다. 그러나 다양한 종류의 객체를 모두 검출해내고 인식하여, 자동으로 어노테이션을 하기에는 현재까지의 기술로는 큰 어려움이 있다. 이러한 문제점들을 극복하고자 본 논문에서는 비디오 어노테이션 모듈과 브라우징 모듈로 구성되는 시스템을 제안한다. 시맨틱 데이터에 접근하기 위해 링크드 데이터를 이용하여 다수의 어노테이션을 수행하는 사용자들이 협업적으로 동영상 콘텐츠에 등장하는 객체에 대한 어노테이션을 수행 할 수 있도록 하는 어노테이션 모듈이다. 첫 번째는 어노테이션 서버에서 관리되는 어노테이션 데이터는 온톨로지 형태로 표현하여 다수의 사용자가 어노테이션 데이터를 쉽게 공유하고 확장 할 수 있도록 하였다. 특히 어노테이션 데이터는 링크드 데이터에 존재하는 객체의 URI와 동영상 콘텐츠에 등장하는 객체를 연결하기만 한다. 즉, 모든 관련 정보를 포함하고 있는 게 아니라 사용자의 요구가 있을 때, 해당 객체의 URI를 이용하여 링크드 데이터로부터 가져온다. 두 번째는 시청자들이 동영상 콘텐츠를 시청하는 중 관심 있는 객체에 대한 정보를 브라우징 하는 모듈이다. 이 모듈은 시청자의 간단한 상호작용을 통해 적절한 질의문을 자동으로 생성하고 관련 정보를 링크드 데이터로 부터 얻어 제공한다. 본 연구를 통해 시맨틱웹 환경에서 사용자의 상호작용을 통해 즉각적으로 관심 있는 객체의 부가적인 정보를 얻을 수 있도록 함으로써 향후 개선된 동영상 콘텐츠 서비스 환경이 구축 될 수 있기를 기대한다.

효과적인 인터랙티브 비디오 저작을 위한 얼굴영역 기반의 어노테이션 방법 (Annotation Method based on Face Area for Efficient Interactive Video Authoring)

  • 윤의녕;가명현;조근식
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.83-98
    • /
    • 2015
  • TV를 보면서 방송에 관련된 정보를 검색하려는 많은 시청자들은 정보 검색을 위해 주로 포털 사이트를 이용하고 있으며, 무분별한 정보 속에서 원하는 정보를 찾기 위해 많은 시간을 소비하고 있다. 이와 같은 문제를 해결하기 위한 연구로써, 인터랙티브 비디오에 대한 연구가 활발하게 진행되고 있다. 인터랙티브 비디오는 일반적인 비디오에 추가 정보를 갖는 클릭 가능한 객체, 영역, 또는 핫스팟을 동시에 제공하여 사용자와 상호작용이 가능한 비디오를 말한다. 클릭 가능한 객체를 제공하는 인터랙티브 비디오를 저작하기 위해서는 첫째, 증강 객체를 생성하고, 둘째, 어노테이터가 비디오 위에 클릭 가능한 객체의 영역과 객체가 등장할 시간을 지정하고, 셋째, 객체를 클릭할 때 사용자에게 제공할 추가 정보를 지정하는 과정을 인터랙티브 비디오 저작 도구를 이용하여 수행한다. 그러나 기존의 저작 도구를 이용하여 인터랙티브 비디오를 저작할 때, 객체의 영역과 등장할 시간을 지정하는데 많은 시간을 소비하고 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 유사한 샷들의 모임인 샷 시퀀스의 모든 샷에서 얼굴 영역을 검출한 샷 시퀀스 메타데이터 모델과 객체의 어노테이션 결과를 저장할 인터랙티브 오브젝트 메타데이터 모델, 그리고 어노테이션 후 발생될 수 있는 부정확한 객체의 위치 문제를 보완할 사용자 피드백 모델을 적용한 얼굴영역을 기반으로 하는 새로운 형태의 어노테이션 방법을 제안한다. 마지막으로 제안한 어노테이션 방법의 성능을 검증하기 위해서 인터랙티브 비디오 저작 시스템을 구현하여 기존의 저작도구들과 저작 시간을 비교하였고, 사용자 평가를 진행 하였다. 비교 분석 결과 평균 저작 시간이 다른 저작 도구에 비해 2배 감소하였고, 사용자 평가 결과 약 10% 더 유용한다고 평가 되었다.

건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여 (Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE)

  • 장하렴;유지수;양성병
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.57-84
    • /
    • 2023
  • 현대사회는 정보통신기술 및 빅데이터 기술의 발전으로 누구나 인터넷을 통해 손쉽게 방대한 데이터를 얻고 활용할 수 있는 시대로, 양질의 데이터를 수집하는 능력을 넘어 수많은 정보 속에서 올바른 데이터만을 선별하는 능력이 더욱 중요해지고 있다. 이러한 기조는 학계에서도 이어지고 있는데, 축적되는 연구물 속에서 양질의 연구를 선별하여 올바른 지식구조를 형성하기 위해, 다양한 연구 분야에서 체계적 고찰(systematic review) 및 비체계적 고찰(non-systematic review)과 같은 문헌연구(literature review)가 수행되고 있다. 한편, 코로나19 팬데믹 이후 의료산업에서도 그동안 합의에 이르지 못했던 원격의료가 제한적으로나마 허용되고, 인공지능 및 빅데이터 기술이 응용된 건강추천시스템(health recommender systems: HRS)과 같은 새로운 의료서비스가 각광을 받고 있다. 하지만, 실무적으로 HRS가 미래 의료산업 발전을 이끌 중요한 기술로 평가받고 있음에도 불구하고, 학술적인 문헌연구는 다른 분야에 비해 매우 부족한 실정이다. 더불어 HRS는 학제적 성격이 강한 융합 분야임에도 불구하고, 기존의 문헌연구는 비체계적 고찰과 체계적 고찰 방법만을 주로 활용하여 이뤄졌기 때문에, 다른 연구 분야와의 상호작용이나 동적인 관계를 유추하기에는 한계가 존재한다. 이에, 본 연구에서는 인용네트워크 분석(citation network analysis: CNA)을 활용하여 HRS 및 주변 연구 분야의 전체적인 네트워크 구조를 파악하였다. 또한, 이 과정에서 최신 논문이 인용 관계가 잘 나타나지 않는 문제를 보완하기 위해 GraphSAGE 알고리즘을 적용함으로써, HRS 연구에 있어 'recommender system', 'wireless & IoT', 'computer vision', 'text mining' 등과 같은 연구 분야들의 중요도가 높아지고 있음을 파악하였으며, 이와 동시에 개인화(personalization) 및 개인정보보호(privacy) 등과 같은 새로운 키워드가 주요 이슈로 등장하고 있음을 확인하였다. 본 연구를 통해 HRS 연구 커뮤니티의 구조를 파악하고, 관련된 연구 동향을 살펴보며, 미래 HRS 연구 방향을 설계함에 있어 실질적인 통찰을 제공할 수 있을 것으로 기대한다.

인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로 (Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China)

  • 이재원;오상진
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • 최근 전 세계 보험업계에도 기계학습, 자연어 처리, 딥러닝 등의 인공지능 기술 활용을 통한 디지털 전환이 급속도로 확산하고 있다. 이에 따라 인공지능 기술을 기반으로 한 인슈어테크와 플랫폼 비즈니스 성공을 이룬 해외 보험사들도 증가하고 있다. 대표적으로 중국 최대 민영기업인 평안보험그룹은 '금융과 기술', '금융과 생태계'를 기업의 핵심 키워드로 내세우며 끊임없는 혁신에 도전한 결과, 인슈어테크와 디지털플랫폼 분야에서 괄목할만한 성과를 보이며 중국의 글로벌 4차 산업혁명을 선도하고 있다. 이에 본 연구는 평안보험그룹 인슈어테크와 플랫폼 비즈니스 활동을 ser-M 분석 모델을 통해 분석하여 국내 보험사들의 인공지능 기술기반 비즈니스 활성화를 위한 전략적 시사점을 제공하고자 했다. ser-M 분석 모델은 기업의 경영전략을 주체, 환경, 자원, 메커니즘 관점에서 통합적으로 해석이 가능한 프레임으로, 최고경영자의 비전과 리더십, 기업의 역사적 환경, 다양한 자원 활용, 독특한 메커니즘 관계가 통합적으로 해석되도록 연구하였다. 사례분석 결과, 평안보험은 안면·음성·표정 인식 등 핵심 인공지능 기술을 활용하여 세일즈, 보험인수, 보험금 청구, 대출 서비스 등 업무 전 영역을 디지털로 혁신함으로써 경비 절감과 고객서비스 발전을 이루었다. 또한 '중국 내 온라인 데이터'와 '회사가 축적한 방대한 오프라인 데이터 및 통찰력'을 인공지능, 빅데이터 분석 등 신기술과 결합하여 금융 서비스와 디지털 서비스 사업이 통합된 디지털 플랫폼을 구축하였다. 이러한 평안보험그룹의 성공 배경을 ser-M 관점에서 분석해 보면, 창업자 마밍즈 회장은 4차 산업혁명 시대의 디지털 기술발전, 시장경쟁 및 인구 구조의 변화를 빠르게 포착하여 새로운 비전을 수립하고 디지털 기술중시의 민첩한 리더십을 발휘하였다. 환경변화에 대응한 창업자 주도의 강력한 리더십을 바탕으로 인공지능 기술 투자, 우수 전문인력 확보, 빅데이터 역량 강화 등 내부자원을 혁신하고, 외부 흡수역량의 결합, 다양한 업종 간의 전략적 제휴를 통해 인슈어테크와 플랫폼 비즈니스를 성공적으로 끌어냈다. 이와 같은 성공사례 분석을 통하여 인슈어테크와 디지털플랫폼 도입을 본격 준비하고 있는 국내 보험사들에게 디지털 시대에 필요한 경영 전략과 리더십에 대한 시사점을 줄 수 있다.

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.