DOI QR코드

DOI QR Code

A Deep Learning Method for Cost-Effective Feed Weight Prediction of Automatic Feeder for Companion Animals

반려동물용 자동 사료급식기의 비용효율적 사료 중량 예측을 위한 딥러닝 방법

  • Kim, Hoejung (Department of Big Data Analytics, Kyung Hee University) ;
  • Jeon, Yejin (School of Management, Kyung Hee University) ;
  • Yi, Seunghyun (School of Management, Kyung Hee University) ;
  • Kwon, Ohbyung (School of Management, Kyung Hee University)
  • 김회정 (경희대학교 빅데이터응용학과) ;
  • 전예진 (경희대학교 경영학과) ;
  • 이승현 (경희대학교 경영학과) ;
  • 권오병 (경희대학교 경영학과)
  • Received : 2022.03.07
  • Accepted : 2022.03.23
  • Published : 2022.06.30

Abstract

With the recent advent of IoT technology, automatic pet feeders are being distributed so that owners can feed their companion animals while they are out. However, due to behaviors of pets, the method of measuring weight, which is important in automatic feeding, can be easily damaged and broken when using the scale. The 3D camera method has disadvantages due to its cost, and the 2D camera method has relatively poor accuracy when compared to 3D camera method. Hence, the purpose of this study is to propose a deep learning approach that can accurately estimate weight while simply using a 2D camera. For this, various convolutional neural networks were used, and among them, the ResNet101-based model showed the best performance: an average absolute error of 3.06 grams and an average absolute ratio error of 3.40%, which could be used commercially in terms of technical and financial viability. The result of this study can be useful for the practitioners to predict the weight of a standardized object such as feed only through an easy 2D image.

최근 IoT 기술의 발달로 외출 중에도 반려동물에 급여하도록 자동 사료급식기가 유통되고 있다. 그러나 자동급식에서 중요한 중량을 측정하는 저울 방식은 쉽게 고장이 나고, 3D카메라 방식은 비용이 든다는 단점이 있으며, 2D카메라 방식은 중량 측정의 정확도가 떨어진다. 특히 사료가 복합된 경우 중량 측정 문제는 더욱 어려워질 수 있다. 따라서 본 연구의 목적은 2D카메라를 사용하면서도 중량을 정확하게 추정할 수 있는 딥러닝 접근법을 제안하는 것이다. 이를 위해 다양한 합성곱 신경망을 이용하였으며, 그중 ResNet101 기반 모델이 3.06 gram의 평균 절대 오차와 3.40%의 평균 절대비 오차를 기록하며 가장 우수한 성능을 보였다. 본 연구의 결과로 사료와 같이 규격화된 물체의 중량을 확보가 용이한 2D 이미지를 통해서만 예측할 필요가 있을 경우 유용한 정보로 활용될 수 있다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2022-0-00904, 다품종 소량 비건육 사료 생산 스마트팩토리 기반 구축 및 비대면 큐레이팅 중개 시스템 구축 개발). 본 논문은 연구재단 4단계 BK21 사업으로부터 지원받은 연구임.

References

  1. Pet Industry Market Size, Trends Ownership Statistics, American Pet Products Association, 2021. Available at https://www.americanpetproducts.org/press_industrytrends.asp (Accessed 2022.03.02)
  2. Babu, B. R., P.P Kumar., P.G Kuppusamy., "Arduino Mega based PET feeding automation", IOSR Journal of Electronics and Communication Engineering, Vol.14, No.4, (2019), 13-16
  3. Buayai, P., P, Kullapapruk., L, Carson., K.R. Saikaew., "Semi-automatic pig weight estimation using digital image analysis", Applied Engineering in Agriculture, Vol. 35, No.4, (2019), 521-534 https://doi.org/10.13031/aea.13084
  4. Cominotte, A., A. F. A, Fernandes., J. R. R, Dorea., G. J. M, Rosa., M. M, Ladeira., E. H. C. B, van Cleef., O. M, Neto.,"Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases", Livestock Science, Vol.232, No.103904, (2020)
  5. Dehais, J., M, Anthimopoulos., S, Shevchik., S, Mougiakakou., "Two-view 3D reconstruction for food volume estimation", IEEE, Vol.19, No.5, (2017), 1090-1099
  6. Deloitte., "Consumption Trends Driven by COVID-19", Deloitte Insights, No.17, (2021), 50-54
  7. Fernandes, A. F., E. M, Turra., E. R. de Alvarenga., T. L. Passafaro., F. B, Lopes., G. F, Alves., G. J, Rosa, "Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia", Computers and electronics in agriculture, Vol. 170, No.105274, (2020)
  8. Geirhos, R., P, Rubisch., C, Michaelis., M, Bethge., F. A, Wichmann., W, Brendel., "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness", arXiv preprint arXiv, 1811.12231, (2018)
  9. Gjergji, M., V, de Moraes Weber., L. O. C, Silva., R, da Costa Gomes., T. L. A. C, De Araujo., H, Pistori., M, Alvarez., "Deep learning techniques for beef cattle body weight prediction", International Joint Conference on Neural Networks (IJCNN), (2020), 1-8
  10. HosseinNia, S.H., I, Tejado., B.M, Vinagre., "Fractional-order reset control: Application to a servomotor", Mechatronics, Vol.23, No.7, (2013), 781-788 https://doi.org/10.1016/j.mechatronics.2013.03.005
  11. Jiang, M., G, Guo., "Body weight analysis from human body images", IEEE Transactions on Information Forensics and Security, Vol.14, No.10, (2019), 2676-2688 https://doi.org/10.1109/tifs.2019.2904840
  12. Kashiha, M., C, Bahr., S, Ott., C. P, Moons., T. A, Niewold., F. O, Odberg., D, Berckmans., "Automatic weight estimation of individual pigs using image analysis", Computers and Electronics in Agriculture, Vol.107, (2014), 38-44 https://doi.org/10.1016/j.compag.2014.06.003
  13. Kienzle, E., R, Bergler., A, Mandernach., "A comparison of the feeding behavior and the human-animal relationship in owners of normal and obese dogs", The Journal of nutrition, Vol.128, No.12, (1998), 2779S-2782S https://doi.org/10.1093/jn/128.12.2779S
  14. Koley, S., S, Srimani., D, Nandy., P, Pal., S, Biswas., I, Sarkar., "Smart Pet Feeder", In Journal of Physics: Conference Series, Vol.1797, No.1, (2021), 12018
  15. Konovalov, D. A., A, Saleh., D. B, Efremova., J. A, Domingos., D. R, Jerry., "Automatic weight estimation of harvested fish from images", Digital Image Computing: Techniques and Applications(DICTA), (2019), 1-7
  16. Lee, M. S., H. Ahn, "A time series graph based convolutional neural network model for effective input variable pattern learning: Application to the prediction of stock market." Journal of Intelligence and Information Systems, Vol. 24, No. 1, (2018) 167-181. https://doi.org/10.13088/JIIS.2018.24.1.167
  17. Lee, J., Suh, B., Y. Kwon, "A Study on the impact of artificial intelligence on decision making: focusing on human-AI collaboration and decision-maker's personality trait." Journal of Intelligence and Information Systems, Vol. 27, No. 3, (2021), 231-252. https://doi.org/10.13088/JIIS.2021.27.3.231
  18. Liu, R., "Automatic Pet Feeder based on Single Chip Microcomputer", In Journal of Physics: Conference Series, Vol. 2037, No. 1, (2021), 12104
  19. Malmanger, E., Why Is My Dog Not Eating?, PetMD, 2021, Available at https://www.petmd.com/dog/symptoms/why-my-dog-not-eating (Accessed 2022.03.02)
  20. Pouladzadeh, P., S, Shirmohammadi., R, Al-Maghrabi., "Measuring calorie and nutrition from food image", IEEE Trans. Instrum. Meas, Vol.63, No.8, (2014), 1947-1956 https://doi.org/10.1109/tim.2014.2303533
  21. Puri, M., Z, Zhu., Q, Yu., A, Divakaran., H, Sawhney., "Recognition and volume estimation of food intake using a mobile device", Workshop on Applications of Computer Vision (WACV), (2009), 1-8
  22. Pyo, J., H, Duan., S, Baek., M.S, Kim., T, Jeon., Y.S, Kwon., K.H, Cho., "A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery", Remote Sensing of Environment, Vol.233, No. 111350, (2019)
  23. Rajpurkar, P., J, Irvin., K, Zhu., B, Yang., H, Mehta., T, Duan., A.Y, Ng., "Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning", arXiv preprint arXiv, 1711.05225, (2017)
  24. Razzaki, S., A, Baker., Y, Perov., K, Middleton., J, Baxter., D, Mullarkey., S, Johri., "A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis", arXiv preprint arXiv, 1806.10698, (2018)
  25. Rahman, M.H., "Food volume estimation in a mobile phone based dietary assessment system", Conf. on Signal Image Technology and Internet Based Systems (SITIS), (2012), 988-995
  26. Seo, Y., K.S. Shin, "Business application of convolutional neural networks for apparel classification using runway image.", Journal of Intelligence and Information Systems, Vol. 24, No. 3, (2018), 1-19. https://doi.org/10.13088/JIIS.2018.24.3.001
  27. Srivastava, N., G, Hinton., A, Krizhevsky., I, Sutskever., R, Salakhutdinov., "Dropout: a simple way to prevent neural networks from overfitting", The journal of machine learning research, Vol.15, No.1, (2014), 1929-1958
  28. Shin, H., J, Kim., "A Study on the Development of Wearable Products Applied to PetTech Service Using IoT and AI Technolog", The Journal of Korean Society of Design Culture, Vol.26, No.1, (2020), 261-272 https://doi.org/10.18208/ksdc.2020.26.1.261
  29. Subhi, M. A., S. H. M, Ali., A. G, Ismail., M, Othman., "Food volume estimation based on stereo image analysis", IEEE Instrumentation & Measurement Magazine, Vol.21, No.6, (2018), 36-43 https://doi.org/10.1109/MIM.2018.8573592
  30. Tessema, G.B., T.A, Worku., Z.B, Tessema., "Programmable Pet Feeder", International Journal of Scientific Engineering and Research (IJSER), Vol.3, No.11, (2015), 99-104
  31. Vania, K. Karyono., I.H.T, Nugroho., "Smart dog feeder design using wireless communication, MQTT and Android client", International Conference on Computer, Control, Informatics and its Applications (IC3INA), (2016), 191-196
  32. Wadhawni, P., S, Ganka., Pet Tech Market, Global Market Insights, 2021, Available at https://www.gminsights.com/industry-analysis/pet-tech-market (Accessed 2022.03.02)
  33. Xu, C., Y.K.N, He., A, Parra., C, Boushey., E, Delp., "Image-based food volume estimation", 5th Int. Workshop on Multimedia for Cooking and Eating Activities, (2013), 75-80
  34. Zhu, F., M, Bosch., C.J, Boushey., E.J, Delp., "An image analysis system for dietary assessment and evaluation", IEEE Int. Conf. on Image Processing, (2010), 1853-1856
  35. Mortensen, A. K., P, Lisouski., P, Ahrendt., "Weight prediction of broiler chickens using 3D computer vision", Computers and Electronics in Agriculture, Vol.123, (2016), 319-326 https://doi.org/10.1016/j.compag.2016.03.011
  36. Song, X., E. A. M, Bokkers., P. P. J, van der Tol., P. G, Koerkamp., S, Van Mourik., "Automated body weight prediction of dairy cows using 3-dimensional vision", Journal of Dairy Science, Vol.101, No.5, (2018), 4448-4459 https://doi.org/10.3168/jds.2017-13094
  37. Zhou, J., X, Hong., F, Su., G, Zhao., "Recurrent convolutional neural network regression for continuous pain intensity estimation in video", IEEE conference on computer vision and pattern recognition workshops, (2016), 84-92
  38. Xue, Y., N, Ray., J, Hugh., G, Bigras., "Cell counting by regression using convolutional neural network", In European Conference on Computer Vision, (2016), 274-290