• Title/Summary/Keyword: intelligent video surveillance

Search Result 128, Processing Time 0.022 seconds

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

A novel hybrid method for robust infrared target detection

  • Wang, Xin;Xu, Lingling;Zhang, Yuzhen;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5006-5022
    • /
    • 2017
  • Effect and robust detection of targets in infrared images has crucial meaning for many applications, such as infrared guidance, early warning, and video surveillance. However, it is not an easy task due to the special characteristics of the infrared images, in which the background clutters are severe and the targets are weak. The recent literature demonstrates that sparse representation can help handle the detection problem, however, the detection performance should be improved. To this end, in this text, a hybrid method based on local sparse representation and contrast is proposed, which can effectively and robustly detect the infrared targets. First, a residual image is calculated based on local sparse representation for the original image, in which the target can be effectively highlighted. Then, a local contrast based method is adopted to compute the target prediction image, in which the background clutters can be highly suppressed. Subsequently, the residual image and the target prediction image are combined together adaptively so as to accurately and robustly locate the targets. Based on a set of comprehensive experiments, our algorithm has demonstrated better performance than other existing alternatives.

A study on automated speed enforcement system algorithm for using image processing (영상처리를 이용한 과속단속 알고리즘 연구)

  • Park, Geon-Yeong;Jeon, Min-ho;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.833-836
    • /
    • 2013
  • In this paper, we proposed an intelligent surveillance system which can be determined by the overspeed of vehicle which continuously collects by video imaging device. Imaging device to capture images continuously, and filtering errors that occur as a natural, long-distance moving objects by comparing the images collected before and after the images. To measure the size of things, it proves that able to measure speed of the vehicle, depending on the amount of growing pixels using the pixel processing.

  • PDF

Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors (유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Implementation of fall-down detection algorithm based on Image Processing (영상처리 기반 낙상 감지 알고리즘의 구현)

  • Kim, Seon-Gi;Ahn, Jong-Soo;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.56-60
    • /
    • 2017
  • This paper describes the design and implementation of fall-down detection algorithm based on image processing. The fall-down detection algorithm separates objects by using background subtraction and binarization after grayscale conversion of the input image acquired by the camera, and recognizes the human body by using labeling operation. The recognized human body can be monitored on the display image, and an alarm is generated when fall-down is detected. By using computer simulation, the proposed algorithm has shown a detection rate of 90%. We verify the feasibility of the proposed system by verifying the function by using the prototype test implemented on the DSP image processing board.

Object-based Compression of Thermal Infrared Images for Machine Vision (머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Choo, Hyon-Gon;Cheong, Won-Sik;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.

A Robust Object Detection and Tracking Method using RGB-D Model (RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법)

  • Park, Seohee;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Recently, CCTV has been combined with areas such as big data, artificial intelligence, and image analysis to detect various abnormal behaviors and to detect and analyze the overall situation of objects such as people. Image analysis research for this intelligent video surveillance function is progressing actively. However, CCTV images using 2D information generally have limitations such as object misrecognition due to lack of topological information. This problem can be solved by adding the depth information of the object created by using two cameras to the image. In this paper, we perform background modeling using Mixture of Gaussian technique and detect whether there are moving objects by segmenting the foreground from the modeled background. In order to perform the depth information-based segmentation using the RGB information-based segmentation results, stereo-based depth maps are generated using two cameras. Next, the RGB-based segmented region is set as a domain for extracting depth information, and depth-based segmentation is performed within the domain. In order to detect the center point of a robustly segmented object and to track the direction, the movement of the object is tracked by applying the CAMShift technique, which is the most basic object tracking method. From the experiments, we prove the efficiency of the proposed object detection and tracking method using the RGB-D model.

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 기능실에 대한 무선 센서 네트워크 성능 분석)

  • An, Tea-Ki;Shin, Jeong-Ryol;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1701-1708
    • /
    • 2011
  • A typical day in the subway transportation is used by hundreds of thousands are also concerned about the safety of the various workrooms with high underground fire or other less than in the subway users could be damaging even to be raised and there. In 2010, in fact, room air through vents in the fire because smoke and toxic gas accident victims, and train service suspended until such cases are often reported. In response to these incidents in subway stations, even if the latest IT technology, wireless sensor network technology and intelligent video surveillance technology by integrating fire and structural integrity, such as a comprehensive integrated surveillance system to monitor the development of intelligent urban transit system and are under study. In this study, prior to the application of the monitoring system into the field stations, authors carried out the ZigBee-based wireless sensor networks performance analyzation in the Chungmuro station. The test results at a communications room and ventilation room of the station are summarized and analyzed.

  • PDF

Subject Region-Based Auto-Focusing Algorithm Using Noise Robust Focus Measure (잡음에 강인한 초점 값을 이용한 피사체 중심의 자동초점 알고리듬)

  • Jeon, Jae-Hwan;Yoon, In-Hye;Lee, Jin-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this paper we present subject region-based auto-focusing algorithm using noise robust focus measure. The proposed algorithm automatically estimates the main subject using entropy and solves the traditional problems with a subject position or high frequency component of background image. We also propose a new focus measure by analyzing the discrete cosine transform coefficients. Experimental results show that the proposed method is more robust to Gaussian and impulse noises than the traditional methods. The proposed algorithm can be applied to Pan-tilt-zoom (PTZ) cameras in the intelligent video surveillance system.

A Study on the Development, Performance and Reliability Certification for Fire Detection System in Outdoor Area (옥외형 화재경보시스템의 개발과 성능시험에 관한 연구)

  • Baek, Dong-Hyun;Ghil, Min-Sik
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.15-18
    • /
    • 2013
  • This paper is concerned with the Performance and Reliability Certification for fire detection system in outdoor area such small and middle sized cultural assets, natural monument and outdoor facilities. Especially, if a fire were to occur in vulnerable area, it is difficulty to detect a fire. therefore we propose a high efficiency and low cost unmanned fire detection system in capable of an early detection regardless spontaneously fire or firebug. for Adoption of Intelligent Fire Detection System with movable and unmanned function breaking from the existing Conventional Fire Detection System, this Range of R&D includes the Performance test, Function test, Field test, Flame Detection test and EMI/EMS Compliance test. the Result data of Performance test, Function test and Field test is generally good during 3 months. also we checked that thermal variation test and EMI/EMS compliance test are good result data within allowable range. As a result of general test, we verified improvement results that the measure distance of fire detection extend 75 m, the Power of waiting time increase 4 hours, the Power of operation time increase 3 days and the context awareness with video as well as sensors.