Subject Region-Based Auto-Focusing Algorithm Using Noise Robust Focus Measure

잡음에 강인한 초점 값을 이용한 피사체 중심의 자동초점 알고리듬

  • Jeon, Jae-Hwan (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Yoon, In-Hye (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Lee, Jin-Hee (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University) ;
  • Paik, Joon-Ki (Dept. of Image Engineering. Graduate School of Advanced Image Science, Multimedia, and Film, Chung-Ang University)
  • 전재환 (중앙대학교 첨단영상 대학원) ;
  • 윤인혜 (중앙대학교 첨단영상 대학원) ;
  • 이진희 (중앙대학교 첨단영상 대학원) ;
  • 백준기 (중앙대학교 첨단영상 대학원)
  • Received : 2010.08.29
  • Accepted : 2010.11.30
  • Published : 2011.03.25

Abstract

In this paper we present subject region-based auto-focusing algorithm using noise robust focus measure. The proposed algorithm automatically estimates the main subject using entropy and solves the traditional problems with a subject position or high frequency component of background image. We also propose a new focus measure by analyzing the discrete cosine transform coefficients. Experimental results show that the proposed method is more robust to Gaussian and impulse noises than the traditional methods. The proposed algorithm can be applied to Pan-tilt-zoom (PTZ) cameras in the intelligent video surveillance system.

본 논문은 잡음에 강인한 초점 값을 이용한 피사체 중심의 자동초점 알고리듬을 제안한다. 제안된 방법은 영상의 엔트로피를 이용하여 피사체가 존재하는 영역을 자동으로 추정함으로써, 배경에 의해 잘못된 자동초점 결과를 얻는 문제점을 개선하였다. 또한 이산 코사인 변환 계수를 분석하여 새로운 초점 값 계산 방법을 제안하였고, 실험결과를 통해 기존의 알고리듬에 비해 제안된 방법이 가우시안 잡음과 임펄스 잡음이 있는 경우에도 초점 값 특성이 강인함을 검증하였다. 제안하는 자동초점 알고리듬은 지능형 감시 시스템의 팬-틸트-줌 카메라 등에 적용 가능하다.

Keywords

References

  1. 카메라 및 캠코더의 시장 기술 보고서, 중소기업진흥공단 마케팅 정보시스템, October 2009.
  2. K. Choi, J. Lee, and S. Ko, "New autofocus technique using the frequency selective weighted median filter for video cameras," IEEE Trans. Consumer Electronics, vol. 45, no. 3, pp. 820-827, August 1999. https://doi.org/10.1109/30.793616
  3. K. Ooi, K. Izurni, M. Noaali, and I. Takeda, "An advanced autofocus system for video camera using quasi condition reasoning," IEEE Trans. Consumer Electronics, vol. 36, no. 3, pp. 526-529, March 1990. https://doi.org/10.1109/30.103169
  4. J. He, R. Zhou, and Z. Hong, "Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera," IEEE Trans. Consumer Electronics, vol. 49, no. 2, pp. 257-262, May 2003. https://doi.org/10.1109/TCE.2003.1209511
  5. F. Li and H. Jin, "A fast auto focusing method for digital still camera," Proc. Int. Conf. Machine Learning and Cybernetics, vol. 8, pp. 5001-5005, August 2005.
  6. P. Yin and W. Jiang, "Autofocusing region selection for computer vision," Proc. Int. Conf. Signal Processing 2008, pp. 1364-1367, October 2008.
  7. S. Lee, Y. Kumar, J. Cho, S. Lee, and S. Kim, "Enhanced autofocus algorithm using robust focus measure and fuzzy reasoning," IEEE Trans. Circuits and Systems for Video Technology, vol. 18, no. 9, pp. 1237-1246, September 2008. https://doi.org/10.1109/TCSVT.2008.924105
  8. J. Tenenbaum, "Accommodation in computer vision," Ph.D. Thesis, Stanford University, October 1970.
  9. S. Nayar and Y. Nakagawa, "Shape from focus," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, pp. 824-831, August 1994. https://doi.org/10.1109/34.308479
  10. M. Subbarao and J. Tyan, "The optimal focus measure for passive autofocusing and depth from focus," in SPIE Conf. Videometrics IV, vol. 2595, pp. 89-99, October 1995.
  11. M. Kristan, J. Pers, M. Perse, and S. Kovacic, "A Bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform," Pattern Recognition Letters, vol. 27, no. 13, pp. 1431-1439, October 2006. https://doi.org/10.1016/j.patrec.2006.01.016