최근 국내 많은 지능형교통체계 사업에서 스마트교차로를 설치하고 있으나, 교통량 수집 및 통계분석 이외에 교통신호운영에 활용하는 사례가 미비한 상태이다. 하지만, 고질적인 교통혼잡에 대응하기 위해서는 스마트교차로에서 수집된 자료를 활용하여 효율적인 신호운영을 수행하는 방안이 필요한 실정이다. 따라서, 본 연구에서는 효율적인 교통신호운영을 위해 스마트교차로 자료를 활용한 실시간 교통신호제어 알고리즘 운영을 위한 절차를 수립하였으며, 기존 알고리즘을 개선하여 실제 스마트교차로에서 운영이 가능하도록 하였다. 효과 분석 결과, 교차로 지체가 감소하였고 옵셋 조정 시 구간 속도도 개선되는 효과가 나타나는 것으로 확인되었다.
인터넷을 통한 지식의 유통이 텍스트 형태의 지식뿐만 아니라 동영상 형태의 지식 유통으로 진화하고 있는 상황에서, UCC 지식 동영상을 공유하는 서비스가 나타나왔다. 본 논문은 동영상 UCC를 중심으로 지식 공유를 하는 'H' 사이트의 비즈니스 모델 평가 과정에서 수행된 고객 모델 분석사례를 보고한다. UCC 지식 동영상 공유 서비스는, 텍스트 형태의 지식공유 형태를 벗어나 새로운 형태인 동영상으로 지식을 공유한다는 점에서 불연속적 혁신의 형태를 띠며, 컨텐트 제공자와 컨텐트 소비자가 상호 매개되므로 직간접적 네트워크 효과가 일어나는 Value Network라는 특성을 가진다. 이렇게 불연속적 혁신이 일어나는 Value Network의 고객 모델 분석을 위해 첨단기술수용주기 이론인 캐즘 이론과 이를 심화 발전시킨 테크노그래픽스, 그리고 블루오션 전략에서 소개된 비고객 분석을 적용하여, UCC 지식 동영상 공유 사이트인 'H'사이트의 To-Be 고객 모델을 제안한다.
저 수준의 특징정보를 사용하는 내용기반 검색만으로 지능형 정보검색을 위한 사용자의 개념적인 요구에 부합하는 검색결과를 제공하기 어렵다. 일반적으로 비디오 데이터에는 동영상 정보와 함께 음성, 음향 등의 오디오 정보와 폐쇄자막 등의 정보가 포함되어 있다. 지식기반 비디오 검색은 그러한 다양한 정보를 사용하여 자동색인을 수행하고 색인 데이터베이스를 구축한다. 이로써 사용자는 보다 개념적인 검색 요구에 부합하는 검색 결과를 얻을 수 있다. 본 논문에서는 비디오 내의 한국어 폐쇄자막을 이용한 지식기반 비디오 검색 시스템을 제안한다. 한국어 폐쇄자막은 형태소 분석 수준에서 자동색인되며, 색인 데이터베이스를 이용하여 키워드 질의를 통해 비디오를 검색할 수 있다. 실험에서 한국어 속기시스템으로 제작된 폐쇄자막이 포함된 뉴스비디오에 적용하여, 제안하는 방법이 사용자의 보다 의미 있는 개념적인 요구에 부합하는 검색 결과를 얻을 수 있음을 확인하였다.
영상보안은 카메라, 전송장치, 저장 및 재생장치 등으로 구성되며 범죄예방, 재난 감시 등에 사용되고 있다. 최근 매우 다양한 분야로 파급되고 있으며, 자동으로 사람 및 사물의 특징적인 객체를 인식하거나 추적할 수 있는 지능형 영상보안 시스템으로 발전하고 있다. 본 연구는 홈과 공공부문, 민간부문으로 구분하여 최신 기술을 적용한 영상보안 서비스 사례들을 조사하고 비즈니스 관점에서 어떠한 이점을 가져다주는지 조사·연구하고자 하였다. 본 연구에서 소개한 사례들을 살펴봄으로써 뛰어난 CCTV와의 호환, 여러 개의 영상감시, CCTV 촬영 화면 모션 감지, 자동 분석을 통한 알람 제공 등 영상보안 서비스가 지능적으로 발전하고 있다는 것을 확인할 수 있었다.
유비쿼터스 시티(유시티)에서는 수많은 비디오 카메라들이 설치된다. 이렇게 설치된 많은 카메라로부터 대용량의 비디오 데이터가 실시간으로 끊임없이 발생하고 유시티의 관리 시스템으로 전달된다. 유시티의 다양한 서비스들을 뒷받침하기 위해서는 이러한 비디오 데이터를 저장하고, 이렇게 저장된 대용량의 비디오 데이터를 분석할 수 있는 방법과 관리 시스템이 요구된다. 그래서, 이 논문에서는 클라우드 컴퓨팅을 기반으로 한 유시티 비디오 관리 시스템을 제안한다. 또한, 근래 주목받고 있는 데이터 병렬처리 프레임워크인 Hadoop MapReduce를 이용하여 이러한 빅데이터 비디오를 분석하는 방법을 제안하고, 이에 따른 우리의 성능 평가를 소개한다.
TCS자료를 통한 고속도로 화물자동차 수요추정은 많은 한계가 있다. 본 연구는 TCS자료의 차종을 재분류하기 위한 영상조사를 수행하여 고속도로 도시유형별/권역별 차종비율을 분석하였다. 또한, 도시유형별/권역별 차종비율과 TCS자료를 활용하여 2011년 기준 TCS기반 고속도로 화물자동차 O/D를 구축하였다. 본 연구에서 구축한 고속도로 화물자동차 O/D분석결과, 화물자동차 톤급별 평균통행거리는 소형화물차 52km/대, 중형화물차 56km/대, 대형화물차 97km/대로 나타났다. 또한 전국 고속도로를 대상으로 관측교통량과 배정교통량의 오차율이 30% 이하인 관측지점은 전체 관측지점의 87.3%로 나타났다. 본 연구는 고속도로 화물자동차 수요추정을 위한 차종별 고속도로 O/D 구축이라는 점에서 의미가 있으며, 고속도로 장래화물수요예측에 크게 기여할 것으로 판단된다.
실시간 처리 및 프라이버시 강화를 위해 인공지능 모델을 엣지에서 동작시킬 수 있는 온디바이스 AI 기술이 각광받고 있다. 지능형 사물인터넷 기술이 다양한 산업에 적용되면서 온디바이스 AI 기술을 활용한 서비스가 크게 증가하고 있다. 그러나 일반적인 딥러닝 모델은 추론 및 학습을 위해 많은 연산 자원을 요구하고 있다. 따라서 엣지에 적용되는 경량 기기에서 딥러닝 모델을 동작시키기 위해 양자화나 가지치기와 같은 다양한 경량화 기법들이 적용되어야 한다. 본 논문에서는 다양한 경량화 기법 중 가지치기 기술을 중심으로 엣지 컴퓨팅 기기에서 딥러닝 모델을 경량화하여 적용할 수 있는 방안을 분석한다. 특히, 동적 및 정적 가지치기 기법을 적용하여 경량화된 비전 모델의 추론 속도, 정확도 그리고 메모리 사용량을 시험한다. 논문에서 분석된 내용은 실시간 특성이 중요한 지능형 영상 관제 시스템이나 자율 이동체의 영상 보안 시스템에 적용될 수 있다. 또한 사물인터넷 기술이 적용되는 다양한 서비스와 산업에 더욱 효과적으로 활용될 수 있을 것으로 기대된다.
For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.
International Journal of Fuzzy Logic and Intelligent Systems
/
제15권1호
/
pp.27-34
/
2015
For a vision-based driver assistance system, unusual motion detection is one of the important means of preventing accidents. In this paper, we propose a real-time unusual-motion-detection model, which contains two stages: salient region detection and unusual motion detection. In the salient-region-detection stage, we present an improved temporal attention model. In the unusual-motion-detection stage, three kinds of factors, the speed, the motion direction, and the distance, are extracted for detecting unusual motion. A series of experimental results demonstrates the proposed method and shows the feasibility of the proposed model.
Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.