• Title/Summary/Keyword: intelligent surveillance systems

Search Result 157, Processing Time 0.03 seconds

Function Analysis for the active surveillance system of urban transit (도시철도의 능동적 감시체계를 위한 기능 분석)

  • An, Tae-Ki;Shin, Jeong-Ryul;Lee, Woo-Dong;Han, Seok-Yoon;Kim, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1027-1028
    • /
    • 2008
  • Most of the urban transit operation company in Korea have a passive surveillance system to monitor the status of the passengers and facilities in the urban transit service area. The surveillance system is based on CCTV, closed circuit television, and several sensors, such as a fire sensor. However, this system has some limitations to prevent and cope with the emergency quickly. So the urban transit operation companies have plans to be change their surveillance system to be active. The active surveillance system has an intelligent function to detect the event predefined by managers automatically. To construct the active surveillance system, there are a standard concept design and a function analysis. In this paper, we propose the classification of the functions of the active surveillance system for urban transit. We divide the functions into five parts, ordinary monitoring, safety monitoring, environment monitoring, administration support, and record management. And we describe the systems related to the every functions to clarify the classified functions.

  • PDF

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

Design of Upper Body Detection System Using RBFNN Based on HOG Algorithm (HOG기반 RBFNN을 이용한 상반신 검출 시스템의 설계)

  • Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Recently, CCTV cameras are emplaced actively to reinforce security and intelligent surveillance systems have been under development for detecting and monitoring of the objects in the video. In this study, we propose a method for detection of upper body in intelligent surveillance system using FCM-based RBFNN classifier realized with the aid of HOG features. Firstly, HOG features that have been originally proposed to detect the pedestrian are adopted to train the unique gradient features about upper body. However, HOG features typically exhibit a very high dimension of which is proportional to the size of the input image, it is necessary to reduce the dimension of inputs of the RBFNN classifier. Thus the well-known PCA algorithm is applied prior to the RBFNN classification step. In the computer simulation experiments, the RBFNN classifier was trained using pre-classified upper body images and non-person images and then the performance of the proposed classifier for upper body detection is evaluated by using test images and video sequences.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

A Design of Mobile Robot based on Camera and Sound Source Localization for Intelligent Surveillance System (지능형 감시 시스템 구축을 위한 영상과 음원 추적 기반 임베디드 모바일로봇 개발)

  • Park, Jung-Hyun;Kim, Hyung-Bok;Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.532-537
    • /
    • 2009
  • The necessity of intelligent surveillance system is gradually considered seriously from the space where the security is important. In this paper, we embodied unmanned intelligent system by developing embedded mobile robot based on images and sounds tracking. For objects tracking, we used block-matching algorithm and for sound source tracking, we calculated time differences and magnitude dissimilarities of sound. And we demonstrated the superiority of intruder tracking algorithm through the embodiment of Pan-Tilt camera and sound source tracking module using system, Network camera and mobile robot using system and mobile robot using system. By linking security system, the suggested system can provide some interfacing functions for the security service of the public facilities as well as that of home.

An Intelligent Wireless Camera Surveillance System with Motion sensor and Remote Control (무선조종과 모션 센서를 이용한 지능형 무선감시카메라 구현)

  • Lee, Young-Woong;Kim, Jong-Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.672-676
    • /
    • 2009
  • Recently, intelligent surveillance camera systems are needed popularly. However, current researches are focussed on improvement of a single module rather than implementation of an integrated system. In this paper, we implemented a wireless surveillance camera system which is composed of face detection, and using motion sensor. In our implementation, we used a camera module from SHARP, a pair of wireless video transmission module from ECOM, a pair of ZigBee RF wireless transmission module from ROBOBLOCK, and a motion sensor module (AMN14111) from PANASONIC. We used OpenCV library for face dection and MFC for implement software. We identified real-time operations of face detection, PTT control, and motion sensor detecton. Thus, the implemented system will be useful for the applications of remote control, human detection, and using motion sensor.

  • PDF

Secure Camera Network System for Intelligent Surveillance Systems Based on Real-Time Video (실시간 영상 기반의 지능형 보안 관제 시스템을 위한 안전한 카메라 네트워크 시스템)

  • Yang, Soo-mi;Ko, Eun-kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1102-1106
    • /
    • 2015
  • To provide social security and for cooperative smart camera context awareness processing, each camera stores and exchange context data. For a specific event, measured values with other context data is stored RDB. RDB is transformed to ontology RDF file and is used for context reasoning. Interoperability between smart cameras conforms to ONVIF and constitutes intelligent surveillance system. To guarantee the confidentiality and integrity, securiy techniques are adopted. Security overhead between agents is analyzed in the prototype system implemented.

Intelligent Video Surveillance System using RFID Technology (RFID 기술을 이용한 지능형 영상 감시 시스템)

  • An, Tae-Ki;Hong, You-Sik;Song, Young-Jun;Lee, Won-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.133-139
    • /
    • 2011
  • lots of problems are emerged on the conventional surveillance systems at urban railway infrastructure. Many projects and research activities have been processing on those problems. Moreover, The interest in Intelligent Video Surveillance System that provides accident prevention and safe driving in urban railway service is dramatically increasing. This paper represents a drawback of existing studies and introduces a new solution using RFID TAG technology to improve the existing problems. Finally, it describes the practice test of automatic notification system based USN(Ubiquitous Sensor Network) for a dangerous situation.

Robust Object Tracking for Scale Changes (스케일에 강건한 물체 추적 기법)

  • Cheon, Gi-Hong;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.194-203
    • /
    • 2008
  • Though conventional video surveillance systems such as CCTV depended on operators, recently developed intelligent surveillance systems no longer needed operators. However, these new intelligent surveillance systems have their own problems such as Occlusion, changing scale of target object, and affine. This paper handled information damage caused by changing the scale of the target object among other objects. Due to the change of the scale, the inaccurate information of target can be obtained when we update the background information. To handle this problem, we introduce a solution for information damage caused by problem of changing scale of target object located among other objects. Specifically, we suggest multi-stage sampling particle filter based advanced MSER for object tracking system. Through this method, the problem caused by changing scale of target can be avoided.

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.