• Title/Summary/Keyword: intelligent robot

Search Result 1,466, Processing Time 0.024 seconds

A Study on the Selection of Inducement Industry in Hinterland of Busan New Port - According to Analysis on the Structure in International Division of Labor among Korea, China and Japan and the Export-Import Structure of Busan Port against China and Japan - (부산 신항 배후단지 유치산업의 선정에 관한 연구 -한.중.일 국제분업구조와 부산항의 대 중.일 수출입구조 분석에 따른-)

  • Kim, Jeong-Su
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.4
    • /
    • pp.107-130
    • /
    • 2009
  • Future of Busan New Port may depend even on the efficient use of the port hinterland. Accordingly, selection of which industry according to which standard in the port hinterland is another task. In order to solve this problem, it analyzed the structure in international division of labor with China and Japan, which are possessing considerable portion in the trading volume with our country, and the export-import structure of Busan Port against China and Japan, by using RCA index and GL index as well as export-import results. In addition to this, the proper industry was selected on the basis of 10 strategic industries for development in Busan. According to the analytical results, the industries, which will be induced in the hinterland of Busan New Port, include textile clothing, pulp printing matter, jewelry, basic metal nonmetallic product, machine lectric product, automobile, shipbuilding, optics accurate machinery medical treatment musical instrument, nano material, fuel battery, aerospace and intelligent robot.

  • PDF

Visual-Attention Using Corner Feature Based SLAM in Indoor Environment (실내 환경에서 모서리 특징을 이용한 시각 집중 기반의 SLAM)

  • Shin, Yong-Min;Yi, Chu-Ho;Suh, Il-Hong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.90-101
    • /
    • 2012
  • The landmark selection is crucial to successful perform in SLAM(Simultaneous Localization and Mapping) with a mono camera. Especially, in unknown environment, automatic landmark selection is needed since there is no advance information about landmark. In this paper, proposed visual attention system which modeled human's vision system will be used in order to select landmark automatically. The edge feature is one of the most important element for attention in previous visual attention system. However, when the edge feature is used in complicated indoor area, the response of complicated area disappears, and between flat surfaces are getting higher. Also, computation cost increases occurs due to the growth of the dimensionality since it uses the responses for 4 directions. This paper suggests to use a corner feature in order to solve or prevent the problems mentioned above. Using a corner feature can also increase the accuracy of data association by concentrating on area which is more complicated and informative in indoor environments. Finally, this paper will prove that visual attention system based on corner feature can be more effective in SLAM compared to previous method by experiment.

A Study on the Characteristics and Policy Demand of the Unmanned Vehicle Industry in Gyeonggi-do (경기도 무인이동체 산업 특성과 정책수요)

  • Kim, Myung Jin
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-299
    • /
    • 2021
  • As the intelligent revolution triggered by digital technology, unmanned vehicles such as self-driving cars, robots, and drones appeared, which brought about innovative changes in the industry. Gyeonggi Local government has established both an ordinance and a basic plan regarding unmanned vehicles. It is time to prepare a data-based policy by understanding the current state of the unmanned vehicle industry in the province. As a result of the survey, the unmanned vehicle industry in Gyeonggi Province is 25% of the nationwide, and more than 88% is concentrated in the southern part of Gyeonggi Province. The land sector such as the robot and autonomous vehicles are focused on 71.4% and the aviation sector such as drones are 26.7%. However, unmanned vehicle companies in Gyeonggi-do are mostly small-sized businesses with less than 10 years of experience and are in the stage of introduction and growth level. They have a plan to improve technology through continuous R&D by hiring human resources. Therefore, Gyeonggi-do needs to consider policy support for sustainable growth of start-up and small enterprises and for fostering professional manpower and technical skills as well as for establishing an unmanned vehicle industry network to create, share, and spread knowledge.

A Study on the Technology Analysis of Marine Unmanned System for Determination of Core Technology Requirements (핵심기술 소요결정을 위한 해양 무인체계 요구기술 분석 연구)

  • Won, You-Jae;Eom, Jin-Wook;Park, Chan-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.350-361
    • /
    • 2019
  • The fourth industrial revolution based on the intelligent revolution has revolutionized the society as a whole, and it has also affected the defense sector. Various aspects of the war have been changing with the development of technology. In particular, various strategies such as research and development of core technology related to defense unmanned system field and infrastructure are being established based on the fourth industrial revolution technology. In this paper, we have conducted a study to select the technology required for maritime unmanned systems, which can be considered as a priority consideration for the future development of the core technology to be secured prior to the development of the weapon system. First, the core technology prioritization model for the marine unmanned system was established, and the technology fields of the unmanned robot were reclassified and integrated in the related literature such as the classification of the defense technology standard. For the empirical analysis, a questionnaire survey was conducted for 12 specialists who are engaged in the planning of weapons systems, and the importance of technical fields that require development in the development of marine unmanned systems was analyzed. As a result, it was possible to identify the key technology areas that should be considered in selecting the key technologies proposed by the military groups, research institutes, and companies. This could contribute to the establishment of the technology roadmap to develop the marine unmanned system from the future point of view.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Implementing RPA for Digital to Intelligent(D2I) (디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현)

  • Dong-Jin Choi
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.143-156
    • /
    • 2019
  • Types of innovation can be categorized into simplification, information, automation, and intelligence. Intelligence is the highest level of innovation, and RPA can be seen as one of intelligence. Robotic Process Automation(RPA), a software robot with artificial intelligence, is an example of intelligence that is suited for simple, repetitive, large-scale transaction processing tasks. The RPA, which is already in operation in many companies in Korea, shows what needs to be done to naturally focus on the core tasks in a situation where the need for a strong organizational culture is increasing and the emphasis is on voluntary leadership, strong teamwork and execution, and a professional working culture. The introduction was considered naturally according to the need to find. Robotic Process Automation, or RPA, is a technology that replaces human tasks with the goal of quickly and efficiently handling structural tasks. RPA is implemented through software robots that mimic humans using software such as ERP systems or productivity tools. RPA robots are software installed on a computer and are called robots by the principle of operation. RPA is integrated throughout the IT system through the front end, unlike traditional software that communicates with other IT systems through the back end. In practice, this means that software robots use IT systems in the same way as humans, repeat the correct steps, and respond to events on the computer screen instead of communicating with the system's application programming interface(API). Designing software that mimics humans to communicate with other software can be less intuitive, but there are many advantages to this approach. First, you can integrate RPA with virtually any software you use, regardless of your openness to third-party applications. Many enterprise IT systems are proprietary because they do not have many common APIs, and their ability to communicate with other systems is severely limited, but RPA solves this problem. Second, RPA can be implemented in a very short time. Traditional software development methods, such as enterprise software integration, are relatively time consuming, but RPAs can be implemented in a relatively short period of two to four weeks. Third, automated processes through software robots can be easily modified by system users. While traditional approaches require advanced coding techniques to drastically modify how they work, RPA can be instructed by modifying relatively simple logical statements, or by modifying screen captures or graphical process charts of human-run processes. This makes RPA very versatile and flexible. This RPA is a good example of the application of digital to intelligence(D2I).