• Title/Summary/Keyword: intelligent controller

Search Result 1,446, Processing Time 0.025 seconds

Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

  • Afaq, Muhammad;Rehman, Shafqat;Song, Wang-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Despite the fact that traffic engineering techniques have been comprehensively utilized in the past to enhance the performance of communication networks, the distinctive characteristics of Software Defined Networking (SDN) demand new traffic engineering techniques for better traffic control and management. Considering the behavior of traffic, large flows normally carry out transfers of large blocks of data and are naturally packet latency insensitive. However, small flows are often latency-sensitive. Without intelligent traffic engineering, these small flows may be blocked in the same queue behind megabytes of file transfer traffic. So it is very important to identify large flows for different applications. In the scope of this paper, we present an approach to detect large flows in real-time without even a short delay. After the detection of large flows, the next problem is how to control these large flows effectively and prevent network jam. In order to address this issue, we propose an approach in which when the controller is enabled, the large flow is mitigated the moment it hits the predefined threshold value in the control application. This real-time detection, marking, and controlling of large flows will assure an optimize usage of an overall network.

A Self-Tuning PI Control System Design for the Flatness of Hot Strip in Finishing Mill Processes

  • Park, Jeong-Ju;Hong, Wan-Kee;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.379-387
    • /
    • 2004
  • A novel flatness sensing system which is called the Flatness Sensing Inter-stand Looper(FlatSIL) system is suggested and a self-tuning PI control system using the FlatSIL is designed for improving the flatness of hot strip in finishing mill processes. The FlatSIL system measures the tension along the direction of the strip width by using segmented rolls, and the tension profile is approximated through the tension of each segmented roll. The flatness control system is operated by using the tension profile. The proposed flatness control system as far as the tension profile-measuring device works for the full strip length during the strip rolling in finishing mills. The generalized minimum variance self-tuning (GMV S-T) PI control method is applied to control the flatness of hot strip which has a design parameter as weighting factor for updating the PI gains. Optimizing the design parameter in the GMV S-T PI controller, the Robbins-Monro algorithm is used. It is shown by the computer simulation and experiment that the proposed GMV S-T PI flatness control system has better performance than the fixed PI flatness control system.

A Study on the Development of High-Speed Control Algorithm for the trapezoidal Brushless DC Motor (구형파 브러시리스 직류 전동기의 고속 운전 제어 알고리즘 개발에 관한 연구)

  • Choi Jae-Hyuk;Jang Hoon;Kim Jong-Sun;Yoo Ji-Yoon;Song Myung-Hyun;Lee Young-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.435-438
    • /
    • 2002
  • The Objects of this paper are developing and also improving a high-speed driving system of bushless DC motor(BLDCM) with economical and practical performance. Because BLDC motors are manufactured that each motor can create proper torque for their individual purpose, it is difficult to increase over the rated speed when a motor speed (with it's rated road) is reaching to a maximum speed so the motor torque cannot be increased. This paper verifies the effects of Leading Angle Algorithm, that is proposed on this paper, with examining existing methods to maximize the torque of a motor in high-speed driving area. The arithmetic processor for this experiment is TMS320C240 DSP controller that is designed for a special purpose of motor control in Texis Instrument Inc., and the used Inverter is PM10CSJ060, a Intelligent Power Module of Mitsubishi Corporation.

  • PDF

Integrated Risk Management System for Intelligent Vehicle (지능형 자동차의 통합 위험 관리 시스템)

  • Yi, Kyongsu;Choi, Jaewoong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1503-1510
    • /
    • 2012
  • This paper presents an Integrated Risk Management System (IRMS), which is designed to integrate longitudinal and lateral collision avoidance systems. Indices representing longitudinal and lateral collision risks are designed. From the designed indices, an integrated control strategy is designed. A collision avoidance algorithm is designed to assist the driver in avoiding collisions by using a vehicle-driver-controller integrated linear model. The performance of the proposed algorithm is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Vibration Control of Flexible Rotor Systems Using an Electro-rheological Fluid Damper (ER 유체 감쇠기를 이용한 유연 회전축 계의 진동제어)

  • Lim, Seung-Chul;Chae, Jeong-Jae;Park, Sang-Min;Yun, Eun-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.365-373
    • /
    • 2002
  • This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.

Implementation of Multi-encoder Management System based on CANopen Protocol (CANopen 표준 기반 멀티 엔코더 관리 시스템의 구현)

  • Ahn, Hyosung;Kim, Taehyoun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.533-541
    • /
    • 2017
  • Recently, with the adoption of modern computing and communication technologies, manufacturing systems have become more autonomous and intelligent. Thus, as the number of field devices with smart sensors also increase, the need for an integrated management of such devices becomes essential. This paper proposes a smart encoder architecture that integrates the position sensing function with CANopen connectivity. In addition, an integrated system is proposed to simultaneously control and monitor multiple encoders over the Controller Area Network (CAN) fieldbus network. We evaluated the performance and functionalities of the proposed system by comparative experiments with commercial CANopen smart encoders using a CANopen conformance test.

Implementation of Node Mapping-based FlexRay-CAN Gateway for In-vehicle Networking System (차량 네트워크 시스템을 위한 노드 매핑 기반 FlexRay-CAN 게이트웨이 구현)

  • Bae, Yong-Gyung;Kim, Man-Ho;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2011
  • As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) or FlexRay are essential for convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on the communication between heterogeneous networks such as body networking and chassis networking systems. A gateway based on message mapping method was developed to interconnect FlexRay and CAN networks. However, this type of gateways has the following shortcomings. First, when a message ID was changed, the gateway must be reloaded with a new mapping table reflecting the change. Second, if the number of messages to be transferred between two networks increase, software complexity of gateway increases very rapidly. In order to overcome these disadvantages, this paper presents FlexRay-CAN gateway based on node mapping method. More specifically, this paper presents a node mapping based FlexRay-CAN gateway operation algorithm along with the experimental evaluation for ID change.

A Study on the Design of Intelligent Cruise Controller (지능 직선주행 제어기 설계에 관한 연구)

  • Rhee, Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • An nonlinear observer-based longitudinal control law for vehicles is presented in this paper. It is assumed that for vehicle i knows only the distance between vehicle i and the preceding vehicle, i-1. An nonlinear state observer for vehicle I is developed to estimate the velocity and acceleration of the preceding vehicle, i-1. The communication of the position, velocity, and acceleration information is not used in the proposed method. It will be shown by mathematical analysis that the longitudinal control of vehicle can be implemented without an communication of the informations. It will be proven that the observation errors of the nonlinear states converge to zero asymptotically. To show the effectiveness of the proposed method, the simulation results are presented for the longitudinal control of the vehicle.

  • PDF

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H.;Diallo, D.;Zeraoulia, M.;Zidani, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.729-739
    • /
    • 2006
  • This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.