
Journal of Korea Multimedia Society Vol. 18, No. 2, February 2015(pp. 189-198)

http://dx.doi.org/10.9717/kmms.2015.18.2.189

Large Flows Detection, Marking, and Mitigation
based on sFlow Standard in SDN

Muhammad Afaq†, Shafqat Rehman††, Wang-Cheol Song†††

ABSTRACT

Despite the fact that traffic engineering techniques have been comprehensively utilized in the past

to enhance the performance of communication networks, the distinctive characteristics of Software Defined

Networking (SDN) demand new traffic engineering techniques for better traffic control and management.

Considering the behavior of traffic, large flows normally carry out transfers of large blocks of data and

are naturally packet latency insensitive. However, small flows are often latency-sensitive. Without

intelligent traffic engineering, these small flows may be blocked in the same queue behind megabytes

of file transfer traffic. So it is very important to identify large flows for different applications. In the

scope of this paper, we present an approach to detect large flows in real-time without even a short delay.

After the detection of large flows, the next problem is how to control these large flows effectively and

prevent network jam. In order to address this issue, we propose an approach in which when the controller

is enabled, the large flow is mitigated the moment it hits the predefined threshold value in the control

application. This real-time detection, marking, and controlling of large flows will assure an optimize usage

of an overall network.

Key words: Large Flows, Small Flows, sFlow, OpenFlow, Priority Marking, SDN, DDoS

※ Corresponding Author : Wang-Cheol Song, Address:

(690-756) 102 Jejudaehak-ro, Jeju, Republic of Korea,

690-756, TEL : +82-64-754-3656, FAX : +82-64-755-3

620, E-mail : philo@jejunu.ac.kr

Receipt date : Dec. 30, 2014, Revision date : Feb. 11, 2015,

Approval date : Feb. 16, 2015,

†††
Dept. of Computer Eng., Jeju National University

(E-mail : afaq24@gmail.com)
†††
Dept. of Comp. Sci. & Eng., Air University, Islamabad,

Pakistan (E-mail : shafqat.rehman@gmail.com)
†††Dept. of Computer Eng., Jeju National University

(E-mail : kingiron@gmail.com)

※ This research was supported by the 2014 scientific

promotion program funded by Jeju National University

1. INTRODUCTION

Studies [1] have shown that in data networks

the majority of flows tend to be short, whereas the

majority of packets belong to a few long-lived

large flows. The short flows (small flows) are usu-

ally referred to latency-sensitive, bursty applica-

tions, such as VoIP and search results, whereas

the long-lived flows (large flows) are often large

transfers like back-end operations or backups.

The small and large flows phenomenon has been

treated as an issue for network performance.

Network resources are utilized depending on the

constraints and requirements of a particular appli-

cation. Large flows have the tendency to fill net-

work buffers end-to-end and bring in substantial

delay to the latency-sensitive small flows that in

fact share the same buffers with large flows. This

gives rise to the degradation of network perform-

ance. Furthermore, currently used hash-based

multi-path routing techniques used in data net-

works can possibly hash various large flows onto

one same link, whereas leaving other links free and

causing lower quality network usage [2].

Therefore, it will be much suitable to deal with

large flows differently than small flows. In order

to this, detection, marking, and signaling of ex-

istence of large flows is required. Then with SDN,

a traffic engineering module at the controller level

can be informed to route large flows properly.

190 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 18, NO. 2, FEBRUARY 2015

Fig. 1. Software Defined Networking (SDN) Stack.

Generally, the detection of large flows can be at-

tained by means of periodically polling, such as

Hedera [3]. The Hedara technique makes use of the

five-second polling period. This degree of gran-

ularity gives rise to probable network congestion

between polls. Since existing fast data networks

are equipped with 10Gbps or even faster links, the

possibility of dropping many packets between poll-

ing intervals because of late detection of large

flows is too high. Also, there is a possibility that

a short-lived large flow will stay in an unwanted

path during its entire existence.

In this paper, we achieve the detection and mark-

ing of large flows in SDN systems using sampling

technology, sFlow [4]. SDN systems make use of

OpenFlow and sFlow enabled switches with an ad-

vanced software-based centralized controller [5]

which enables network engineers to examine, pre-

dict, and regulate the behavior of the transmitted

data. sFlow based sampling technology requires

these OpenFlow switches to send samples of all

flows to traffic analysis tools, such as sFlowTrend,

sFlow-RT [6], Ganglia etc., which then determines

the existence of large flows based on the samples.

In our proposed approach, SDN control applica-

tion detects large flow and configures the virtual

switch to mark its packets. Basically, the sFlow-

RT controller receives a stream of sFlow measure-

ments from the virtual switch and rapidly detects

large flow in real-time and notifies the control

application. The control application, by means of

OpenFlow controller, instantly sets up an Open-

Flow rule that matches the flow and directing the

switch to mark the flow by assigning the IP type

of service bits. By doing so, the traffic upstream

of the switch will contain large flow being identi-

fied and marked, while small flows will be left

unmarked.

The remainder of the paper is organized as

follows. An overview of sFlow technologies in re-

lation with flow detection and marking is provided

in Section 2 and Section 3. In Section 4, the system

model is presented. In Section 5 and Section 6,

large flows detection and marking, and large flows

mitigation achieved from the proposed approach

are explained respectively. The paper is concluded

in Section 7.

2. FLOW DETECTION BASED ON sFLOW

STANDARD

In order to communicate with the sFlow ana-

lytics engine, such as sFlow-RT [6], switches are

configured to use sFlow protocol in the control

plane. In addition to that, switches are also con-

figured to use OpenFlow protocol to communicate

with OpenFlow controller like OpenDaylight [7] or

Floodlight [8] in the control plane. Control plane

software like OpenFlow controller and sFlow use

Open Northbound APIs to offer control function-

ality and summary statistics to SDN applications,

e.g. DDoS Mitigation, Load Balancer, and Large

Flow Marking etc.

As shown in Fig. 1, the OpenFlow protocol en-

ables SDN controller to interact with forwarding

plane and make adjustments to the network, such

as gathering information of a network of switches

and configure the forwarding trend of these

switches. A graph based model of the network and

an advanced routing algorithm to determine the

flows path through the network is built by SDN

191Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

Fig. 2. sFlow Agent Embedded in Switch/Router.

controller. The OpenFlow protocol then adds the

flow paths determined by the controller to the for-

warding tables of the switches [8]. The sFlow

standard is implemented in the switches/routers

using a separate Application Specific IC (ASIC)

which enables to continuously monitor application

level traffic flows at wire speed on all interfaces

simultaneously. sFlow and OpenFlow together

provide an integrated flow monitoring system in

which the OpenFlow controller can be used to de-

fine the flows which are to be monitored by sFlow.

Furthermore, metrics from sFlow can be used as

feedback by an SDN application to control the for-

warding behavior in the switches.

The sFlow Agent is a software process that

runs as part of the network management software

within a device as shown in Fig. 2. It couples flow

samples and interface counters into sFlow data-

grams that are sent through the network to a

sFlow collector. Sampling of packets is in partic-

ular carried out by the switching/routing ASICS,

giving wire-speed performance. The condition of

the forwarding/routing table entries attached with

each sample packet is also recorded [9].

192 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 18, NO. 2, FEBRUARY 2015

Fig. 3. sFlow Agents and Collector.

3. sFLOW SAMPLING TECHNOLOGY

From wide range of devices, such as physical

switches, virtual switches (OVSes), hosts, etc.,

traffic samples can be collected using sFlow. It is

possible to configure sFlow monitoring on all in-

terfaces of the device with little overhead. The

sampling rate for each link can be determined ac-

cording to the monitoring policy.

Random sampling is performed by sFlow agents

in network devices according to the already set

sampling rate. It is, therefore, possible to use them

to monitor high speed networks with considerable

accuracy. The sampled data is sent as UDP packets

to the specified host and port where sFlow collector

software computes summary statistics and possi-

bly display the result graphically [8].

Fig. 3 shows the basic elements of the sFlow

system. sFlow Agents throughout the network

continuously send a stream of sFlow Datagram to

a central sFlow collector where they are analyzed

by an analytics engine to produce a rich, real-time,

network-wide view of traffic flows [9].

In order to process sFlow packets received from

the network, an extensively used tool named

sFlow-RT [6] is used. It offers real-time monitor-

ing ability into Software Defined Networks.

sFlow-RT sits in the control plane of the SDN

stack. It changes the datagram received into sum-

mary statistics or actionable metrics on the flows

as specified by the user. A set of packets with a

common property constitutes a flow of traffic

known as the flow key which is observed within

a period of time. Fields from the packet header

usually specify the flow key. These fields can be

IP source and destination addresses and TCP/UDP

port numbers. Metrics which are programmatically

approachable through Northbound APIs are usu-

ally represented as flow names. Any computer lan-

guage that supports HTTP request messages

(Python, Java script, Perl, bash etc.) can be used

to fetch metrics from sFlow-RT. Since JSON en-

coded text based results can be easily read and

broadly supported by programming tools, sFlow-

RT statistics can be fetched in JSON format.

4. SYSTEM MODEL

Our system model is based on a testbed using

free Mininet network emulation software. Mininet

uses Linux containers and Open vSwitch to allow

realistic virtual networks of hosts and switches to

be constructed using a virtual machine [10].

Since the default behavior of the Floodlight

OpenFlow Controller is to offer elementary con-

nectivity which can be selectively overridden using

the Static Flow Pusher API, so it was selected for

the testbed. By doing so, simple performance opti-

mizing applications can be developed since they do

not require to be concerned with sustaining con-

nectivity and are open to emphasis on implement-

ing optimizations. Besides, in order to collect sFlow

samples and to implement large flow marking ap-

plication, sFlow-RT controller is used.

As shown in Fig. 4, the system model consists

of a linear topology with four virtual switches.

Each virtual switch is connected to a single host.

Moreover, each virtual switch is further connected

to Floodlight OpenFlow Controller and sFlow-RT

controller. sFlow is configured on each switch to

capture packets according to a specified sampling

193Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

Fig. 4. System Model.

Fig. 5. Flows Definition.

Fig. 6. Threshold Values for Large Flows.

rate. Samples are sent in the form of measurement

datagram by each switch or agent to sFlow-RT

which is real-time analytics engine. The stream of

measurement datagram received from sFlow in re-

al-time is processed by sFlow-RT which then

provides real-time summary statistics to control

application through northbound REST APIs.

Flows have to be defined in order to get them

detected and marked accordingly. A flow is defined

using name, keys, value, and optionally filter at-

tributes. Fig. 5 shows the large and small flows

defined in our Java Script developed control appli-

cation for flows detection and marking. The filter

for small flows has been set to IP TOS value of

00000000 (decimal 0), whereas the filter for large

flows has been set to IP TOS value of 10000000

(decimal 128).

sFlow is set for large flow detection by defin-

ing a large flow as a flow consuming 10% of the

link bandwidth for one second as shown in the

table in Fig. 6. Since our testbed is based on

Mininet and according to the table the link speed

given for Mininet is 10Mbit/s, so a threshold of

1Mbit/s (10% of the link bandwidth) has been

defined in our JavaScript control application. This

threshold is set so that any flow that consumes

10% or more of the link bandwidth is recorded as

a large flow.

Fig. 7 shows the part of JavaScript developed

control application which is responsible for flows

detection and marking. sFlow measurements from

the switches are sent to the sFlow-RT real-time

analytics engine. If any flow is greater than the

predefined threshold value then sFlow-RT con-

troller records or detects that flow as a large flow

in real-time, and immediately installing an Open-

Flow rule that matches the flow and instructing

the switch to mark the flow by setting the IP type

of service bits.

194 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 18, NO. 2, FEBRUARY 2015

Fig. 7. Flows Detection and Marking Function.

Fig. 8. Linear Topology in Floodlight GUI.

5. LARGE FLOWS DETECTION AND MAR-

KING IN MININET-BASED TESTBED

In order to show large flows detection and

marking in our Mininet-based testbed, a step-by-

step procedure of the experiment we carried out

is given as follows:

5.1 Configuring sFlow on Each Switch

sFlow Agents in network devices use random

sampling according to the defined sampling rate

and, therefore, can be used to monitor high speed

networks (Gbps speeds and higher) with quantifi-

able accuracy. The sampled data is sent as UDP

packets to the specified host and port where sFlow

collector software computes summary statistics

and possibly display the results graphically.

The following command line is used to configure

sFlow on each virtual switch (OVSes):

sudo ovs-vsctl -- --id=@sflow create sflow agent

=eth0 target=\"CollectorHost:6343\" sampling=10

polling=20 -- -- set bridge br0 sflow=@sflow

where CollectorHost is the host running sFlow-RT

which is a widely used tool to process sFlow pack-

ets received from the network devices. Sampling

rate is set to 10 which mean that among every 10

packets captured by agent, one will be sent to the

collector. A counter polling interval of 20 seconds

has been selected so that link utilization can be ac-

curately tracked. Finally, the virtual switch (OVS)

on which sFlow is configured is br0.

5.2 Starting Floodlight OpenFlow Controller

Virtual switches are configured to use Open-

Flow protocols to communicate with Floodlight

OpenFlow controller. The OpenFlow protocol en-

ables SDN controller running on a server to gather

topology information of a network of virtual

switches and configure the forwarding behavior of

these virtual switches. Fig. 8 shows the deployed

linear network topology in Floodlight GUI.

5.3 Starting sFlow-RT Controller

As mentioned earlier that sFlow-RT enables re-

195Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

al-time visibility into software defined networks.

sFlow-RT sits in the control plane of the SDN

stack. It converts the received datagram into ac-

tionable metrics or summary statistics based on

the flows defined by the user.

Any language that supports HTTP request

messages (Perl, Python, Java, Java script etc.) can

be used to retrieve metrics from sFlow-RT.

sFlow-RT statistics can be retrieved in JSON

format. JSON encoded text based results are easy

to read and widely supported by programming

tools. Following URL is used to retrieve JSON en-

coded metrics from sFlow-RT:

http://server:8008/metric/agents/metrics/json?fil-

ter

where server is the host running sFlow-RT,

agents are semicolon separated list of host ad-

dresses or names, or ALL to include all hosts, met-

rics are comma separated list of metrics to retrieve,

and filter is a filter to further restrict the hosts to

include in the query.

5.4 Executing sFlow-RT's JavaScript-based

Control Application

The sFlow-RT's control application that we de-

veloped in JavaScript is executed in order to detect

and mark the elephant flows exceeding the thresh-

old value. It is able to detect and mark both UDP

and TCP flows. Several other terms, such as flow

keys, value in bytes, filter, sFlow-RT controller,

and Floodlight OpenFlow controller have also been

defined in this control application. It is pertinent

to mention here that this control application is im-

plemented using node.js which employs asynchro-

nous programming model and is optimized for very

high performance I/O.

5.5 Generating Traffic from Different Hosts

The UDP or TCP traffic is generated by running

iperf between hosts in xterm using the following

command line:

while true; do iperf -c <HostIP> -u -t 40; done

where HostIP means the IP of the host to which

traffic is sent, and ‘u’ shows that the traffic gen-

erated is UDP. TCP traffic can also be generated

by making one host a TCP server and another a

client.

5.6 Visualizing and Analyzing Traffic on sFlow-

RT Controller GUI

The following URL is used to visualize and ana-

lyze the detected and marked large flows:

http://server:8008/metric/ALL/udp_lf0,udp_

lf1,udp_lf2,udp_lf3,udp_lf4,udp_lf5/html

where server is the host running sFlow-RT, and

udp_lf is the name of the metric or UDP flow gen-

erated between different hosts.

Fig. 9 shows the traffic when only the control

application for large flows detection is enabled,

whereas the control application for marking of

large flows is kept disabled. The flows that ex-

ceeds the predefined threshold value of 1Mbps is

detected as large flow while the flow below this

threshold value is recorded as small flow. Since,

in the scope of this paper, our focus is to detect

and mark large flows generated by the user, it can

been seen from the network topology connected to

our system model shown in Fig. 4 that each OVS

is connected to a single host. The users can gen-

erate traffic from each host targeting other hosts

connected in the topology. For the sake of sim-

plicity, we generated UDP traffic by running iperf

from different hosts. It is obvious from the figure

that the flow named upd_lf0 shown in the light blue

line exceeds the threshold value of 1Mbps and

hence it trends the large unmarked flow seen in

the network. However, the two flows named

upd_lf1, and udp_lf2 shown in golden and moss

green colors respectively are below the threshold

196 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 18, NO. 2, FEBRUARY 2015

Fig. 9. Flows Detection.

Fig. 10. Large Flow Marking.

value and hence recorded as small flows.

Fig. 10 shows the traffic when control applica-

tions for both large flow detection and marking are

enabled. As soon as the flow named udp_lf0 shown

in the light blue line exceeds the threshold value,

sFlow-RT immediately detects the large flow and

makes a call to Floodlight's Static Flow Pusher

API to create a rule that matches the IP source

and destination addresses of the large flow with

action to set the IP Type of Service bits to 1000000

(decimal 128). The flow named tos128 shown in the

green line trends the large flow marked, while the

other two small flows have been left unmarked. By

assigning such different classes of service to large

and small flows enables QoS tool like priority

queuing (out of the scope of this paper) to give a

different priority to large and small flows. Without

marking, large flows "Elephants" impact the la-

tency of small flow "Mice".

6. LARGE FLOWS MITIGATION

Distributed Denial of Service (DDoS) attack is

one of the major use cases of large flow. The at-

tacker uses a command and control network to in-

struct large numbers of systems to send traffic to

a designated target with the objective of over-

whelming the target infrastructure and denying

197Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

Fig. 11. Large Flow Mitigation.

access to legitimate users [11], [12].

Fig. 11 shows a typical DDoS attack, consisting

of traffic levels over 7,000 pakcets per second.

When the controller is disabled, the attack traffic

sustains over 7000 packets per second until the at-

tacker stops sending. When the controller is en-

abled, traffic is stopped the instant it hits the 1,000

packets per second threshold defined in the

application. The control is removed 20 seconds lat-

er and re-triggers if the attacker is still sending

traffic.

In our DDoS mitigation system, the sFlow

measurements from all the virtual switches are

forwarded to the sFlow-RT analytics engine which

offers real-time notification of attacks and targets

to the DDoS mitigation application. The DDoS mit-

igation application instructs the controller which

communicates with the switches to mitigate the

DDoS traffic.

7. CONCLUSION

Software Defined Networking (SDN) is an

emerging architecture that allows network admin-

istrators to automatically and dynamically manage

and control a large number of network devices,

services, topology, traffic paths, and packet han-

dling (Quality of Service) policies using high-level

language and APIs. Since the utilization rate of the

bandwidth has become much more significant,

even a short delay in the detection of large flows

could result in big loss of the overall performance.

In this paper, we exploited QoS in SDN and de-

tected and marked large flows by assigning them

different TOS bits as compared to other flows in

the network. Once detected and marked, the flows

can be re-scheduled quickly which results in an

optimize usage of an overall SDN network. In addi-

tion to that, we showed how sFlow can be used

to rapidly detect DDoS attacks and drive controls

to mitigate their effect. Our detection, marking, and

controlling approach makes the packet handling in

SDN very efficient.

REFERENCES

[1] Blog by Martin Casado, http://network-

heresy.com/2013/11/01/of -mice-and-ele-

phants/ (Accessed December 15, 2014)

[2] R. Zhou, "Datacenter Network Large Flow

Detection and Scheduling from the Edge,"

Reading & Research Project, 2014.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Bahdat, "Hedera: Dynamic

Flow Scheduling for Data Center Net-

works," P roceeding of Networked Systems

Design and Implementation Symposium, Vol.

10, pp. 19-19. 2010

[4] P. Peter, S. Panchen, and N. McKee, InMon

Corporation's sFlow: A Method for Monitor-

198 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 18, NO. 2, FEBRUARY 2015

ing Traffic in Switched and Routed Networks,

RFC 3176, 2001.

[5] The Project Floodlight, http://www.project

Floodlight.org/documentation/ (Accessed De-

cember 08, 2014).

[6] sFlow-RT, http://www.inmon.com (Access-

ed December 10, 2014).

[7] Stephen Baucke, Kyle Mestery, Anees Shaikh,

Chris Wright, "OpenDaylight: An Open Source

SDN for your OpenStack Cloud," An Open-

Stack Summit, Hong Kong. 2013.

[8] P. Goransson and C. Black, Software Defined

Networks: A Comprehensive Approach, 1st

Edition, 2014. Elsevier.

[9] Traffic Monitoring using sFlow, http://

www.sflow.org (November 28, 2014).

[10] Controlling Large Flows with OpenFlow,

http://blog.sflow.com/2013_05_01_archive.

html (December 18, 2014).

[11] DDoS, http://blog.sflow.com/2013/03/ddos.html

(December 20, 2014).

[12] Muhammad Nugraha et al., "Utilizing Open-

Flow and sFlow to Detect and Mitigate SYN

Flooding Attack", Journal of Korea Multime-

dia Society, Vol. 17, No. 8, August 2014 (pp.

988-994).

Muhammad Afaq

He received BS degree in

Electrical Eng. from University

of Eng. and Technology, Pe-

shawar, Pakistan, and MS de-

gree in Electrical Eng. with em-

phasis on Telecom from Ble-

kinge Institute of Technology,

Sweden in 2007 and 2010 respectively. Currently, he

is pursuing his PhD degree as a KGSP (Korean

Government Scholarship Program) scholar at Jeju

National University. He has worked as a Research

Associate in the Faculty of Comp. Sci. and Eng. at GIK

Institute of Eng. Sceinces and Technology, Pakistan.

His research interests are software defined network-

ing, wireless networks, protocols etc.

Shafqat Rehman

He received masters degree MS

(Computer Engineering) from

Jeju National University, South

Korea in 2008. He was awarded

Korean Government IT scholar-

ship for Master's studies. He did

his PhD (Networks and Distrib-

uted Systems) from INRIA (French National Institute

for Research in Computer Science and Control),

SophiaAntipolis,France in 2012. He is currently work-

ing as an Assistant Professor at Air University,

Islamabad, Pakistan. His research interests mainly in-

clude experimentation platforms, distributed systems,

cloud computing, software defined networking, data

science, mobile computing, security, Internet archi-

tecture, wireless networks, protocols etc.

Wang-Cheol Song

He received B.S. degree in Food

Engineering and Electronics

from Yonsei University, Seoul,

Korea in 1986 and 1989, re-

spectively. And M.S. and PhD in

Electronics studies from Yonsei

University, Seoul, Korea, in 1991

and 1995, respectively. Since 1996 he has been working

at Jeju National University. His research interests in-

clude VANETs and MANETs, Software Defined

Networks, network security, and network manage-

ment.

