• Title/Summary/Keyword: intelligence information society

Search Result 3,527, Processing Time 0.037 seconds

Multi-resolution Fusion Network for Human Pose Estimation in Low-resolution Images

  • Kim, Boeun;Choo, YeonSeung;Jeong, Hea In;Kim, Chung-Il;Shin, Saim;Kim, Jungho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2328-2344
    • /
    • 2022
  • 2D human pose estimation still faces difficulty in low-resolution images. Most existing top-down approaches scale up the target human bonding box images to the large size and insert the scaled image into the network. Due to up-sampling, artifacts occur in the low-resolution target images, and the degraded images adversely affect the accurate estimation of the joint positions. To address this issue, we propose a multi-resolution input feature fusion network for human pose estimation. Specifically, the bounding box image of the target human is rescaled to multiple input images of various sizes, and the features extracted from the multiple images are fused in the network. Moreover, we introduce a guiding channel which induces the multi-resolution input features to alternatively affect the network according to the resolution of the target image. We conduct experiments on MS COCO dataset which is a representative dataset for 2D human pose estimation, where our method achieves superior performance compared to the strong baseline HRNet and the previous state-of-the-art methods.

Robust Sentiment Classification of Metaverse Services Using a Pre-trained Language Model with Soft Voting

  • Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2334-2347
    • /
    • 2023
  • Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.

Comparing Social Media and News Articles on Climate Change: Different Viewpoints Revealed

  • Kang Nyeon Lee;Haein Lee;Jang Hyun Kim;Youngsang Kim;Seon Hong Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2966-2986
    • /
    • 2023
  • Climate change is a constant threat to human life, and it is important to understand the public perception of this issue. Previous studies examining climate change have been based on limited survey data. In this study, the authors used big data such as news articles and social media data, within which the authors selected specific keywords related to climate change. Using these natural language data, topic modeling was performed for discourse analysis regarding climate change based on various topics. In addition, before applying topic modeling, sentiment analysis was adjusted to discover the differences between discourses on climate change. Through this approach, discourses of positive and negative tendencies were classified. As a result, it was possible to identify the tendency of each document by extracting key words for the classified discourse. This study aims to prove that topic modeling is a useful methodology for exploring discourse on platforms with big data. Moreover, the reliability of the study was increased by performing topic modeling in consideration of objective indicators (i.e., coherence score, perplexity). Theoretically, based on the social amplification of risk framework (SARF), this study demonstrates that the diffusion of the agenda of climate change in public news media leads to personal anxiety and fear on social media.

Individual Audio-Driven Talking Head Generation based on Sequence of Landmark (랜드마크 시퀀스를 기반으로 한 개별 오디오 구동 화자 생성)

  • Son Thanh-Hoang Vo;Quang-Vinh Nguyen;Hyung-Jeong Yang;Jieun Shin;Seungwon Kim;Soo-Huyng Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.553-556
    • /
    • 2024
  • Talking Head Generation is a highly practical task that is closely tied to current technology and has a wide range of applications in everyday life. This technology will be of great help in the fields of photography, online conversation as well as in education and medicine. In this paper, the authors proposed a novel approach for Individual Audio-Driven Talking Head Generation by leveraging a sequence of landmarks and employing a diffusion model for image reconstruction. Building upon previous landmark-based methods and advancements in generative models, the authors introduce an optimized noise addition technique designed to enhance the model's ability to learn temporal information from input data. The proposed method outperforms recent approaches in metrics such as Landmark Distance (LD) and Structural Similarity Index Measure (SSIM), demonstrating the effectiveness of the diffusion model in this domain. However, there are still challenges in optimization. The paper conducts ablation studies to identify these issues and outlines directions for future development.

The Effect of the Project Learning Method on the Learning Flow and AI Efficacy in the Contactless Artificial Intelligence Based Liberal Arts Class

  • Lee, Ae-ri
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.253-261
    • /
    • 2022
  • In this study, the educational effect were sought to be identified after developing and applying project learning for the artificial intelligence based liberal arts education for the non-computer majors. A paired-sample t-test was performed within each group to determine the extent of improvement in the learning flow and artificial intelligence efficacy in the experimental and control groups. After class, an independent sample t-test was performed to examine the statistical effects of pre-test and post-test on the learning flow and artificial intelligence efficacy in the experimental and control groups. The experimental group and control group demonstrated significant improvements in the learning flow and artificial intelligence efficacy before and after class, each respectively. There was no statistically significant difference in the learning flow between the experimental group for which the project learning method was applied and the control group for which only theory and practice were conducted in the artificial intelligence class. It was also confirmed that the experimental group for which the project learning method was applied improved the efficacy of artificial intelligence to a significant level compared to the control group which only proceeded with theory and practice.

The Comparison of the Impact of IQ and Social Intelligence on the Compliance with Administrative Regulatory Policies. (행정규제정책순응에 미치는 학습지능과 사회지능의 영향력 비교)

  • Ha, Ok-Hyun;Oh, Sae-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.247-256
    • /
    • 2009
  • The purpose of this study is to compare the impact of intellectual quotient and social intelligence on compliance with the administrative regulatory policies. This study found two things. The first one is the correlation between intellectual quotient and social intelligence is not so high. No matter how high is his or her intellectual quotient may be, it cannot be said that his or her social intelligence will be high in proportion to IQ. The second one is the influence of social intelligence on administrative regulatory policies is bigger than that of intellectual quotient. So to execute a policy efficiently, we cannot succeed without consideration to the factors of social intelligence. The result of analysis implies that policy authorities and the concerned citizens should try to get the social intelligence factors involved in all processes of administrative regulatory policies such as agenda setting, decision, implementation, evaluation and feedback.

Dr. Vegetable: an AI-based Mobile Application for Diagnosis of Plant Diseases and Insect Pests (농작물 병해충 진단을 위한 인공지능 앱, Dr. Vegetable)

  • Soohwan Kim;DaeKy Jeong;SeungJun Lee;SungYeob Jung;DongJae Yang;GeunyEong Jeong;Suk-Hyung Hwang;Sewoong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.457-460
    • /
    • 2023
  • 본 연구는 시설작물의 병충해 진단을 위해 딥러닝 모델을 응용한 인공지능 서비스 앱, Dr. Vegetable을 제안하고자 한다. 농업 현장에서 숙련된 농부는 한눈에 농작물의 병충해를 판단할 수 있지만 미숙련된 농부는 병충해 피해를 발견하더라도 그 종류와 해결 방법을 찾아내기가 매우 어렵다. 또한 아무리 숙련된 농부라고 할지라도 육안검사만으로 병충해를 조기에 발견하는 것은 쉽지 않다. 한편 시설작물의 경우 병충해에 의한 연쇄피해가 발생할 우려가 있으므로 병충해의 조기 발견 및 방제가 매우 중요하다. 즉, 농부의 경험에 따른 농작물 병해충 진단은 정확성을 장담할 수 없으며 비용과 시간적인 측면에서 위험성이 높다고 할 수 있다. 본 논문에서는 YOLOv5를 활용하여 상추, 고추, 토마토 등 농작물의 병충해를 진단하는 인공지능 서비스를 제안한다. 특히 한국지능정보사회진흥원이 운영하고 있는 AI 통합 플랫폼인 AI 허브에서 제공하는 노지 작물 질병 및 해충 진단 이미지를 사용하여 딥러닝 모델을 학습하였다. 본 연구를 통해 개발된 모바일 어플리케이션을 이용하여 실제 시설농장에서 병충해 진단 서비스를 적용한 결과 약 86%의 정확도, F1 Score 0.84, 그리고 0.98의 mAP 값을 얻을 수 있었다. 본 연구에서 개발한 병충해 진단 딥러닝 모델을 다양한 조도에서 강인하게 동작하도록 개선한다면 농업 현장에서 널리 활용될 수 있을 것으로 기대한다.

  • PDF

Effect of Nursing Students' Emotional Intelligence and Interpersonal Competence on Caring Efficacy (간호대학생의 감성지능, 대인관계유능성이 돌봄효능감에 미치는 영향)

  • Eui-Jeung Park;Gyeong-Sun Jeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.115-124
    • /
    • 2023
  • Purpose : This study investigated the effects of nursing students' emotional intelligence and interpersonal competence on their caring efficacy. Methods : This study surveyed 217 junior and senior nursing students from City B in South Korea between June 1 and June 30, 2023. The SPSS 22.0 program was employed to analyze the collected data by computing the frequency, percentage, mean, and standard deviation, as well as by conducting t-test, ANOVA test, Scheffe's test, Pearson correlation coefficient, and a multivariate regression analysis. Results : The nursing students exhibited an average emotional intelligence of 5.31±.78, interpersonal competence of 3.47±.56, and caring efficacy of 4.02±.62. The students' emotional intelligence showed significant differences in terms of satisfaction with their major (p<.001), satisfaction with the clinical practice (p<.001), satisfaction with their relationship with clinical practice instructors (p=.001), and the standard of living (p=.021). Furthermore, a significant difference in interpersonal competence was observed in terms of the students' satisfaction with their major (p=.003), satisfaction with the clinical practice (p=.001), satisfaction with their relationship with clinical practice instructors (p=.002), and subjective mental health (p=.005). Meanwhile caring efficacy demonstrated a significant difference with regard to the grade level (p=.001), satisfaction with the major (p<.001), satisfaction with the clinical practice (p<.001), satisfaction with their relationship with clinical practice instructors (p=.007), subjective mental health (p<.001), and subjective physical health (p=.047). The factors that affected the caring efficacy included interpersonal competence (p=.002), grade level (p<.001), satisfaction with the major (p=.004), and emotional intelligence (p=.020), all of which together accounted for an explanatory power of 22.3 %. Conclusion : Based on the results of this study, it is evident that further research related to the emotional intelligence, interpersonal competence, and caring efficacy of nursing students must be encouraged in the future. Furthermore efforts should be made to develop appropriate programs aimed at enhancing nursing students' caring efficacy by accounting for their emotional intelligence and interpersonal competence.

A Study on the Intelligence Information System's Research Identity Using the Keywords Profiling and Co-word Analysis (주제어 프로파일링 및 동시출현분석을 통한 지능정보시스템 연구의 정체성에 관한 연구)

  • Yoon, Seong Jeong;Kim, Min Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.139-155
    • /
    • 2016
  • The purpose of this study is to find the research identity of the Korea Intelligent Information Systems Society through the profiling methods and co-word analysis in the most recent three-year('2014~'2016) study to collect keyword. In order to understand the research identity for intelligence information system, we need that the relative position of the study will be to compare identity by collecting keyword and research methodology of The korea Society of Management Information Systems and Korea Association of Information Systems, as well as Korea Intelligent Information Systems Society for the similar. Also, Korea Intelligent Information Systems Society is focusing on the four research areas such as artificial intelligence/data mining, Intelligent Internet, knowledge management and optimization techniques. So, we analyze research trends with a representative journals for the focusing on the four research areas. A journal of the data-related will be investigated with the keyword and research methodology in Korean Society for Big Data Service and the Korean Journal of Big Data. Through this research, we will find to research trends with research keyword in recent years and compare against the study methodology and analysis tools. Finally, it is possible to know the position and orientation of the current research trends in Korea Intelligent Information Systems Society. As a result, this study revealed a study area that Korea Intelligent Information Systems Society only be pursued through a unique reveal its legitimacy and identity. So, this research can suggest future research areas to intelligent information systems specifically. Furthermore, we will predict convergence possibility of the similar research areas and Korea Intelligent Information Systems Society in overall ecosystem perspectives.

Development of Paint Quality Inspection Application using Microsoft Power Platform (Microsoft Power Platform을 이용한 도장 품질 검사 애플리케이션 개발)

  • Seung-Woo Koh;Hwan-Seok Choi;Gyeong-Ryong Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1104-1105
    • /
    • 2023
  • 조선업계에서 전문 인력 수급난으로 난항을 겪고 있다. 이는 선박의 검사에 차질을 빚었고 해양 오염과 선박사고와 같은 문제가 발생하고 있다. 이에 안전 검진 수행에 AI 이미지 인식 기반 진단 모델을 적용하여, 애플리케이션을 통해 비전문가도 품질 진단을 수행할 수 있도록 한다.