• Title/Summary/Keyword: integrated analysis system

Search Result 3,104, Processing Time 0.026 seconds

The Case Study on Application of Software Reliability Analysis Model by Utilizing Failure History Data of Weapon System (무기체계의 고장 이력 데이터를 활용한 소프트웨어 신뢰도 분석 모델 적용 사례 연구)

  • Cho, Ilhoon;Hwang, Seongguk;Lee, Ikdo;Park, Yeonkyeong;Lee, Junghoon;Shin, Changhoon
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.296-304
    • /
    • 2017
  • Purpose: Recent weapon systems in defense have increased the complexity and importance of software when developing multifunctional equipment. In this study, we analyze the accuracy of the proposed software reliability model when applied to weapon systems. Methods: Determine the similarity between software reliability analysis results (prediction/estimation) utilizing data from developing weapon systems and system failures data during operation of weapon systems. Results: In case of a software reliability prediction model, the predicted failure rate was higher than the actual failure rate, and the estimation model was consistent with actual failure history data. Conclusion: The software prediction model needs to adjust the variables that are appropriate for the domestic weapon system environment. As the reliability of software is increasingly important in the defense industry, continuous efforts are needed to ensure accurate reliability analysis in the development of weapon systems.

Automated Finite Element Mesh Generation for Integrated Structural Systems (통합 구조 시스템의 유한요소망 형성의 자동화)

  • Yoon, Chongyul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

Athermalization of an Optical System Based on Lens Shape and Assembly Method

  • Xu, Sihua;Peng, Xiaoqiang;Tie, Guipeng;Guan, Chaoliang;Hu, Hao;Xiong, Yupeng
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.429-437
    • /
    • 2019
  • Temperature adaptability is an important metric for evaluating the performance of an optical system. The temperature characteristics of the optical system are closely related to the material and shape of its lens. In this paper, we establish a mathematical model relating the temperature characteristics to the shape and material of the lens. Then a novel assembly structure that can solve the lens constraint and positioning problem is proposed. From those basics, the correctness of the theoretical model and the effectiveness of the assembly structure are verified through simulated analysis of the imaging quality of the optical system, whose operating temperature range is $-60{\sim}100^{\circ}C$.

Application of a Multidisciplinary Design Optimization Algorithm to Design of a Belt Integrated Seat Considering Crashworthiness (충돌을 고려한 안전띠 일체형 의자의 다분야 통합최적설계)

  • Shin Moon-Kyun;Kang Byung-Soo;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.395-402
    • /
    • 2005
  • Recently Multidisciplinary Design Optimization Based on Independent Subspaces (MDOIS), an MDO (multidisciplinary design optimization) algorithm, has been proposed. In this research, an MDO problem is defined for design of a belt integrated seat considering crashworthiness, and MDOIS is applied to solve the problem. The crash model consists of an airbag, a belt integrated seat (BIS), an energy absorbing steering system, and a safety belt. It is found that the current design problem has two disciplines - structural nonlin- ear analysis and occupant analysis. The interdisciplinary relationship between the disciplines is identified and is addressed in the system analysis step in MDOIS. Interdisciplinary variables are belt load and stiffness of the seat, which are determined in system analysis step. The belt load is passed to the structural analysis subspace and stiffness of the seat back frame to the occupant analysis subspace. Determined design vari- ables in each subspace are passed to the system analysis step. In this way, the design process iterates until the convergence criterion is satisfied. As a result of the design, the weight of the BIS and Head Injury Crite- rion (HIC) of an occupant are reduced with specified constraints satisfied at the same time. Since the system analysis cannot be formulated in an explicit form in the current example, an optimization problem is formu - lated to solve the system analysis. The results from MDOIS are discussed.

Development of Integrated Design and Optimization Software for the High Temperature Furnace Design (초고온 진공로 통합설계 최적화 소프트웨어 개발)

  • Jin, YuXuan;Lee, Jaewoo;Byun, Yunghwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 2005
  • High temperature vacuum furnaces or high standard electric furnaces demand high technology level and high production cost. Therefore, an iterative design process and the optimization approach under integrated computing environment are required to reduce the development risk. Moreover, it also required to develop an integrated design software that can manage the centralized database system between factory and design department, and the automated furnace design and analysis. The developed software is dedicated to the development of the vacuum (electric) furnaces. Based on the distribute middleware system, the GUI module, the CAD module, the thermal analysis module and the optimization module are integrated. For the DBMS, Microsoft Access is employed, the GUI is developed using Visual Basic language, and AutoCAD is utilized for the configuration design. By investigating the analysis code interface, the analysis and optimization process, and the data communication method, the overall system architecture, the method to integrate the optimizer and ana lysis codes, and the method to manage the data flow are proposed and verified through the optimal furnace design.

  • PDF

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

Toward a System of Integrating Structural Analysis and Design Procedures (구조해석과 설계과정의 통합시스템에 관하여)

  • 이주성;오석진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.120-127
    • /
    • 1993
  • This paper is concerned with the integrated computer program system aiming at efficiently performing the structural analysis and design. The developed computer program system is introduced and applied to a simple two-dimensional structure to show the general concept of the integrated system. Some design modifications and re-analyses are illustrated including local mesh refinement, These show the efficiency in doing design modification and analysis.

  • PDF

Development of the Integrated System for Power System Operational Planning an (전력수급계획 및 운용해석 종합시스템 개발)

  • Park, Si-Woo;Yoon, Yong-Beum;Nam, Jae-Hyun;Ahn, Yang-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1042-1045
    • /
    • 1998
  • The main purpose of HITES(Highly Integrate Total Energy System) is to build and develop an integrated energy system for power system operational planning and analysis which consists of load forecast, economic generation schedule, stability analysis and relational database system. The integrated energy system can be utilized to supply a stable electric power and operate KEPCO power system facilities economically. This system will be put into operation in 1999. This paper describes the main feature of the HITES, system main functions, numerical methods adopted this system, and network configuration.

  • PDF

A Study on the Development of an Integrated Classification System for Archives of May 18th Democratic Uprising (5·18민주화운동 기록물 통합분류체계 개발 연구)

  • Park, Seong-Woo;Jeong, Dae-Keun
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.373-403
    • /
    • 2017
  • The purpose of this study is to establish the classification principle of archives for the May 18th democratic uprising in terms of preservation and utilization of it and to develop an integrated classification system for it. For this purpose, it was carried out by the previous research on the classification of records and institutional case analysis. Also, we developed an integrated provenance-based classification system based on the practical analysis on the data held in 3 representative institutions in Gwangju. This classification system was proposed by facets of 'provenance-material-period-media-subject' type. We also proposed the collection-based integrated classification system that reflects on the expansion of archivists' role and the trend of times.

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (I) - Modeling and Performance Analysis - (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (I) -모델링 및 성능해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1029-1037
    • /
    • 2004
  • High-speed/precision servomechanisms have been widely used in the manufacturing and semiconductor industries. In order to ensure the required high-speed and high-precision specifications in servomechanisms, an integrated design methodology is required, where the interactions between mechanical and electrical subsystems will have to be considered simultaneously. For the first step of the integrated design process, it is necessary to obtain not only strict mathematical models of separate subsystems but also formulation of an integrated design problem. A two-degree-of-freedom controller described in the discrete-time domain is considered as an electrical subsystem in this paper. An accurate identification process of the mechanical subsystem is conducted to verify the obtained mathematical model. Mechanical and electrical constraints render the integrated design problem accurate. Analysis of the system performance according to design and operating parameters is conducted for better understanding of the dynamic behavior and interactions of the servomechanism. Experiments are performed to verify the validity of the integrated design problem in the x-Y positioning system.