• Title/Summary/Keyword: integrated CAD systems

Search Result 85, Processing Time 0.035 seconds

Development of a CAD-based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life (캐드 기반 범용 최적설계 시스템 개발 및 피로수명을 위한 구조형상최적설계에의 응용)

  • Kwak, Byung-Man;Yu, Yong-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1340-1345
    • /
    • 2003
  • In this paper, an integrated optimal design software system for structural components has been developed which interfaces existing commercial codes for CAD, CAE and Optimization. They include specialized optimal design software codes such as iSIGHT and VisualDOC, optimization module imbedded in CAD software developed by CAD developers, and optimal design software systems based on API of commercial CAD software. The advantages of the CAD imbedded optimal design approach and those of specialized optimal design software are taken to develop the system. The user defines optimal design formulation in the user interface for problem definition in the CAD control stage, where design variables are directly selectable from the CAD model and various properties and performance functions defined. The commercial CAD codes, Open I-DEAS are used for the development. The resulting software is minimally connected to CAD and CAE systems while keeping maximum independence from each other. This assures flexibility and freedom for problem definition. Fatigue life optimization is taken as a nontrivial application area. As a specific example, the shape design of a knuckle part of an automobile is performed, where the minimum fatigue life over the material domain in terms of the number of cycles of a curb strike are maximized under the constraint of not exceeding the current mass. The fatigue life has been improved by four times of the initial life. The developed software is illustrated to maintain the advantages of existing optimal design software systems while improving independency and flexibility.

  • PDF

A Development of the Knowledge-Based CAD Interface Systems in Offshore Industry-The Interface Between Material Control System and CAD System (해양구조물산업에서의 지식기반 CAD 인터페이스 시스템 구축-자재관리시스템과 CAD시스템 간의 인터페이스)

  • Hwang, Sung-Ryoung;Kim, Jae-Gyun;Jung, Kui-Hun;Yang, Young-Tae
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.319-328
    • /
    • 1999
  • Today, offshore design field is concerned with system integration such as CIM(Computer Integrated Manufacturing), PDMS(Product Data Management System) and EDMS(Engineering Data Management System) in order to cope with the change of engineering specification as owner's requirements during construction stage of the project. This paper deals with the case study that describes about the efficient interface between material control system and 3D CAD system to support the design process in offshore industry using design rules involved the designer's knowledge. In this paper, we constructed an information system, called knowledge-based CAD interface systems, which is composed material code management system and 3D specification generator which automatically creates 3D catalogue anti specification by linking the material code, called short code, and the specification components of the 3D CAD system. As a result of the construction, it is possible to maintain consistency of the design process, and through reduction of the design processing time and improvement of the design process, competitiveness is improved.

  • PDF

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

Improved Link System of Schedule and 3D Object for VR-base Construction Project (가상건설기반의 건설공사 일정 및 3D객체 연동시스템의 개선된 구축방안)

  • Kwon, Jung-Hui;Moon, Hyoun-Seok;Park, Seo-Young;Gi, Sang-Bok;Kang, Leen-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.289-294
    • /
    • 2007
  • Virtual reality (VR) technology for construction project includes 3D CAD application and 4D CAD system for visualizing construction schedule data. 3D CAD application is more important in the design phase and 4D CAD system is effective tool in the construction phase. This study suggests a methodology to develop VR functions that can be used for project life cycle. The results of this study includes composition algorithms to make VR systems such as bird's eye view system, VR drawings system, VR telepresence system and VR risk management system. Those methodologies can be used for integrated VR system with nD CAD object.

  • PDF

Procedural Interface between Freehand Sketch-based Modeling System and Commercial MCAD (프리핸드 스케치 기반 모델링 시스템과 상업용 MCAD의 절차적 인터페이스)

  • Cheon, Sang-Uk;Mun, Du-Hwan;Kim, Byung-Chul;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • Research that reconstructs a 3D model from a freehand 2D sketch has gained attention since 1990s, when data integration in the CAD/CAPP/CAM/CNC chain was an important issue. However, 2D sketches in the conceptual design phase have not been integrated with the downstream CAD/CAPP/CAM/CNC chain. In this paper, we present a method to interface a freehand sketch modeling to commercial CAD systems by mapping a sketch modeling history to the macro parametric history. We use an extended ISO10303-112 standard to represent the modeling history in a gestural modeling system and translate sketch files to neutral macro files. Macro parametric translators are used to translate netural macro files to commercial CAD files.

A Knowledge-Based CAD System for the Synthesis of Supplementary Features in Injection Molded Parts (사출성형제품의 부형상 설계를 위한 지식형 CAD 시스템에 관한 연구)

  • 허용정;김상국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1933-1947
    • /
    • 1991
  • The synthesis of supplementary features of injection molded parts has been done empirically, since it requires profound knowledge about the features' moldability and causal effects on the properties of the part, which are not available to designers through current CAD systems. RIBBER is a knowledge module which contains knowledge to permit non-experts as well as mold design experts to generate acceptable supplementary features of injection molded parts. A knowledge-based CAD system is constructed by adding the knowledge module, RIBBER, for mold feature synthesis and appropriate CAE programs for mold design analysis to an existing geometric modeler in order to provide designers, at the initial design stage, with comprehensive process knowledge-based CAD system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design stage of injection molding.

The Analysis of View and Daylights for the Design of Public Housing Complexes Using a Residential Environment Analysis System Integrated into a CAD System (주거환경분석시스템의 CAD 시스템 통합을 통한 공동주택단지설계 시 일조 및 조망분석에 관한 연구)

  • Park, Soo-Hoon;Ryu, Jeong-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.137-145
    • /
    • 2007
  • This paper concerns about residential environment analysis program implementation for design and analysis on public housing complexes such that view and daylight analysis processes are automated and integrated into existing design routine to achieve better design efficiency. Considering the architectural design trends this paper chooses ArchiCAD as a platform for a CAD system, which contains the concepts such as integrated object-oriented CAD, virtual building and BIM. Residential environment analysis system consists of three components. The first component is the 3D modeling part defining 3D form information for external geographic contour models, site models and interior/exterior of apartment buildings. The second is the parametric library part handling the design parameters for view and daylight analysis. The last is the user interface for the input/output and integration of data for the environment analysis. Daylight analysis shows rendered images as well as results of daylight reports and grades per time and performs the calculations for floor shadow. It separates the site-only analysis from the analysis of site and exterior environmental parameters. View analysis considers horizontal and vertical view angles to produce view image from each unit and uses the bitmap analysis method to determine opening ratio, scenery ratio and void ratio. We could expect better performance and precision from this residential environment analysis system than the existing 2D drawing based view and daylight analysis methods and overcome the existing one-way flow of design information from 3D form to analysis reports so that site design modifications are automatically reflected on analysis results. Each part is developed in a module so that further integration and extension into other related estimation and construction management systems are made possible.

Workpart and Setup Planning for NC Machining of Prismatic Model:Feature-Based Approach (형상인식에 의한 다면체모델의 NC 가공을 위한 소개 및 셋업계획)

  • 지우석;서석환;강재관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1078-1083
    • /
    • 1992
  • Extracting the process planning information from the CAD data is the key issue in integrated CAD/CAM system. In this paper, we develop algorithms for extracting the shape and setup configuration for NC machining of prismatic parts. In determining the workpart shape, the minimum-enclosing condept is applied so that the material waste is minimized. To minimize the number of setups, feature based algorithm is developed considrint the part shape, tool shape, and tool approach direction. The validity and effectiveness of the developed algorithms were tested by computer simulations.

  • PDF

Earned Value Management Systems Using 4D-CAD (4D CAD 활용을 통한 공정-원가 통합 시스템)

  • Park Ji-Ho;Jung Young-Soo;Kim Sung-Mo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.504-508
    • /
    • 2003
  • Cost and schedule are the major concerns for the successful construction project management. The four dimensional CAD (4D CAD) integrating graphical data and scheduling data has also been an area of research interests for improving construction controls. In order to achieve the benefits from these areas in an integrated way, this study proposes a 4D-EVMS system for the owners. Managerial requirements for cost and schedule control for the owners are identified first. A 4D-EVMS model is then proposed which provides functional flexibility in order to enhance the efficiency of the system. Lessons learned and practical implications are briefly summarize.

  • PDF

Prediction of temperature rise of Electric Switching Device Using CFD-CAD Integrated Analysis (CFD-CAD 통합해석을 이용한 전력기기 온도상승 예측)

  • Ahn, Heui-Sub;Lee, Jong-C.;Choi, Jong-Ung;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.808-810
    • /
    • 2002
  • Higher current-rating and improved thermal performance are being sought for existing medium-voltage vacuum circuit breakers(VCB) in order to meet market needs which require to be compact and downsized. In this paper, thermal performance of medium voltage vacuum circuit breaker was investigated through experiments and numerical analysis. We changed several major parameters of current-rating and heat sink affecting on thermal behaviors in the breaker and observed the results. To predict the temperature distribution in complex three-dimensional (3-D) VCB components and gas, the commercial package was used to simulate conjugate heat transfer. Although some assumptions and simplifications were introduced to simulate the model, results from the computational model were in good agreement with actual temperature rise measurements obtained from experiments.

  • PDF