• Title/Summary/Keyword: integrally closed

Search Result 23, Processing Time 0.018 seconds

ON 𝜙-SCHREIER RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1057-1075
    • /
    • 2016
  • Let R be a ring in which Nil(R) is a divided prime ideal of R. Then, for a suitable property X of integral domains, we can define a ${\phi}$-X-ring if R/Nil(R) is an X-domain. This device was introduced by Badawi [8] to study rings with zero divisors with a homomorphic image a particular type of domain. We use it to introduce and study a number of concepts such as ${\phi}$-Schreier rings, ${\phi}$-quasi-Schreier rings, ${\phi}$-almost-rings, ${\phi}$-almost-quasi-Schreier rings, ${\phi}$-GCD rings, ${\phi}$-generalized GCD rings and ${\phi}$-almost GCD rings as rings R with Nil(R) a divided prime ideal of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain, almost domain, almost-quasi-Schreier domain, GCD domain, generalized GCD domain and almost GCD domain, respectively. We study some generalizations of these concepts, in light of generalizations of these concepts in the domain case, as well. Here a domain D is pre-Schreier if for all $x,y,z{\in}D{\backslash}0$, x | yz in D implies that x = rs where r | y and s | z. An integrally closed pre-Schreier domain was initially called a Schreier domain by Cohn in [15] where it was shown that a GCD domain is a Schreier domain.

GRADED INTEGRAL DOMAINS IN WHICH EACH NONZERO HOMOGENEOUS IDEAL IS DIVISORIAL

  • Chang, Gyu Whan;Hamdi, Haleh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1041-1057
    • /
    • 2019
  • Let ${\Gamma}$ be a nonzero commutative cancellative monoid (written additively), $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}$ $R_{\alpha}$ be a ${\Gamma}$-graded integral domain with $R_{\alpha}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma}$, and $S(H)=\{f{\in}R{\mid}C(f)=R\}$. In this paper, we study homogeneously divisorial domains which are graded integral domains whose nonzero homogeneous ideals are divisorial. Among other things, we show that if R is integrally closed, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is an h-local $Pr{\ddot{u}}fer$ domain whose maximal ideals are invertible, if and only if R satisfies the following four conditions: (i) R is a graded-$Pr{\ddot{u}}fer$ domain, (ii) every homogeneous maximal ideal of R is invertible, (iii) each nonzero homogeneous prime ideal of R is contained in a unique homogeneous maximal ideal, and (iv) each homogeneous ideal of R has only finitely many minimal prime ideals. We also show that if R is a graded-Noetherian domain, then R is a homogeneously divisorial domain if and only if $R_{S(H)}$ is a divisorial domain of (Krull) dimension one.

A NOTE ON w-GD DOMAINS

  • Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1351-1365
    • /
    • 2020
  • Let S and T be w-linked extension domains of a domain R with S ⊆ T. In this paper, we define what satisfying the wR-GD property for S ⊆ T means and what being wR- or w-GD domains for T means. Then some sufficient conditions are given for the wR-GD property and wR-GD domains. For example, if T is wR-integral over S and S is integrally closed, then the wR-GD property holds. It is also given that S is a wR-GD domain if and only if S ⊆ T satisfies the wR-GD property for each wR-linked valuation overring T of S, if and only if S ⊆ (S[u])w satisfies the wR-GD property for each element u in the quotient field of S, if and only if S𝔪 is a GD domain for each maximal wR-ideal 𝔪 of S. Then we focus on discussing the relationship among GD domains, w-GD domains, wR-GD domains, Prüfer domains, PνMDs and PwRMDs, and also provide some relevant counterexamples. As an application, we give a new characterization of PwRMDs. We show that S is a PwRMD if and only if S is a wR-GD domain and every wR-linked overring of S that satisfies the wR-GD property is wR-flat over S. Furthermore, examples are provided to show these two conditions are necessary for PwRMDs.