A NOTE ON w-GD DOMAINS

Dechuan Zhou

Abstract

Let S and T be w-linked extension domains of a domain R with $S \subseteq T$. In this paper, we define what satisfying the w_{R}-GD property for $S \subseteq T$ means and what being $w_{R^{-}}$or w-GD domains for T means. Then some sufficient conditions are given for the w_{R}-GD property and w_{R}-GD domains. For example, if T is w_{R}-integral over S and S is integrally closed, then the w_{R}-GD property holds. It is also given that S is a w_{R}-GD domain if and only if $S \subseteq T$ satisfies the w_{R}-GD property for each w_{R}-linked valuation overring T of S, if and only if $S \subseteq(S[u])_{w}$ satisfies the w_{R}-GD property for each element u in the quotient field of S, if and only if $S_{\mathfrak{m}}$ is a GD domain for each maximal w_{R}-ideal \mathfrak{m} of S. Then we focus on discussing the relationship among GD domains, w-GD domains, w_{R}-GD domains, Prüfer domains, $\mathrm{P} v \mathrm{MDs}$ and $\mathrm{P} w_{R} \mathrm{MDs}$, and also provide some relevant counterexamples. As an application, we give a new characterization of $\mathrm{P} w_{R}$ MDs. We show that S is a $\mathrm{P} w_{R} \mathrm{MD}$ if and only if S is a w_{R}-GD domain and every w_{R}-linked overring of S that satisfies the w_{R}-GD property is w_{R}-flat over S. Furthermore, examples are provided to show these two conditions are necessary for $\mathrm{P} w_{R} \mathrm{MDs}$.

1. Introduction

In this paper, we assume that R is an integral domain with quotient field K. An overring of R means a subring of K containing R. In 1974, Dobbs ([6]) introduced the notion of GD domains, i.e., an integral domain R is called a $G D$ domain if $R \subseteq T$ satisfies the going-down (GD for short) property for each overring T of R. In 1976, Dobbs proved that R is a GD domain if and only if $R \subseteq T$ satisfies the GD property for each integral domain T containing R ([8, Theorem 1]). Examples of GD domains are Prüfer domains and arbitrary domains of Krull dimension 1. GD has been figured prominently in the characterization of several kinds of domains. For example, R is a Bézout domain if and only if R is a GCD and $R \subseteq R[u]$ satisfies GD for all $u \in K$ ([4, Corollary 4.3]). And R is Prüfer if and only if R is an integrally closed

[^0]FC domain (i.e., domains for which every intersection of two principal ideals is finitely generated) and $R \subseteq R[u]$ satisfies GD for all $u \in K$ ([5, Corollary 4]).

Since (semi)star operations $*$ on domains were introduced several decades ago, many researchers have been studying the *-version of classical theorems on domains. In 2009, Dobbs and Sahandi ([9]) introduced $*$-GD domains: R is called a $*-G D$ domain if for every overring T of R and every semistar operation $*^{\prime}$ on T, the extension $R \subseteq T$ satisfies ($*, *^{\prime}$)-GD property ([9, Definition 3.1]). Here an extension $R \subseteq T$ of domains is said to satisfy the $\left(*, *^{\prime}\right)$-GD property if whenever $P_{0} \subseteq P$ are quasi- $*$-prime ideals of R and Q is a quasi-*'-prime ideal of T such that $Q \cap R=P$, there exists a quasi-*'-prime ideal Q_{0} of T such that $Q_{0} \subseteq Q$ and $Q_{0} \cap R=P_{0}$, where $*$ and $*^{\prime}$ are semistar operations on R and T respectively ([9, Definition 2.1]). And $*$-GD domains are discussed mainly by the aid of $*$-Nagata domains in the three papers $[9,10,15]$.

In this paper, we pay close attention to the corresponding GD domains of a specific star operation, i.e., the w-operation. Analogously to the GD-property, a w-linked extension $S \subseteq T$ of domains over R is said to satisfy the $w_{R}-G D$ property if given $P_{1}, P_{2} \in w_{R^{-}} \operatorname{Spec}(S)$ with $P_{1} \subseteq P_{2}$ and $Q_{2} \in w_{R^{-}} \operatorname{Spec}(T)$ with $Q_{2} \cap S=P_{2}$, there exists some $Q_{1} \in w_{R}$ - $\operatorname{Spec}(T)$ such that $Q_{1} \subseteq Q_{2}$ and $Q_{1} \cap S=P_{1}$. In particular, when $S=R$, then $R \subseteq T$ is said to satisfy the w-GD property. Finally S (resp., R) is called a $w_{R}-G D$ (resp., w-GD) domain if $S \subseteq T$ (resp., $R \subseteq T$) satisfies the w_{R}-GD (resp., w-GD) property for each w_{R}-linked (resp., w-linked) extension T over S (resp., R). Then it is natural to ask whether the definition of w-GD domains here is the same as that of the specific w-case of $*$-GD domains introduced by Dobbs and Sahandi ([9]). Of course, the answer is positive. It depends on the following characterizations of w_{R}-GD domains. Let S be a w-linked extension domain over R and let F be the quotient field of S. Then S is a w_{R}-GD domain if and only if $S \subseteq T$ satisfies the w_{R}-GD property for each w_{R}-linked valuation overring T of S, if and only if $S \subseteq(S[u])_{w}$ satisfies the w_{R}-GD property for each $u \in F$, if and only if $S_{\mathfrak{m}}$ is a GD domain for each maximal w_{R}-ideal \mathfrak{m} of S (Theorem 3.2). In Section 3 , we also point out the relationship among GD domains, w-GD domains, $w_{R^{-}}$ GD domains, Prüfer domains, $\mathrm{P} v \mathrm{MDs}$ and $\mathrm{P} w_{R} \mathrm{MDs}$, and provide the relative counterexamples. In Section 4, we discuss the ring S whose w_{R}-linked overring that satisfies the w_{R}-GD property is w_{R}-flat over S. It is easy to show that a $\mathrm{P} w_{R} \mathrm{MD}$ is such a ring, but the converse does not hold. Indeed, S is a $\mathrm{P} w_{R} \mathrm{MD}$ if and only if S is not only such a ring, but also a w_{R}-GD domain.

Now we recall some notions. Let $\bar{F}(R)$ be the set of all nonzero R-submodules of K and let $F(R)$ be the set of nonzero fractional ideals of R. A mapping $\bar{F}(R) \rightarrow \bar{F}(R), A \mapsto A_{*}$ is called a semistar operation on R if for any nonzero $x \in K$ and $A, B \in \bar{F}(R)$, the following conditions hold: (1) $(x A)_{*}=x A_{*}$. (2) $A \subseteq A_{*}$ and $A \subseteq B$ implies that $A_{*} \subseteq B_{*} .(3)\left(A_{*}\right)_{*}=A_{*}$. A star operation on R is exactly the restriction on $F(R)$ of a semistar operation on R with $R_{*}=R$. Let $*$ be a semistar (resp., star) operation. Then an ideal I of R is called a
quasi-*-ideal (resp., *-ideal) if $I_{*} \cap R=I$ (resp., $I=I_{*}$). A prime ideal P of R is a quasi-*-prime ideal (resp., prime $*$-ideal) if P is a quasi-*-ideal (resp., *-ideal). An ideal \mathfrak{m} of R is a quasi-*-maximal ideal (resp., a maximal *-ideal) if \mathfrak{m} is maximal in the set of all proper quasi-*-ideals (resp., $*$-ideals) of R. Note that each quasi-*-maximal ideal (resp., maximal $*$-ideal) is prime. For an $A \in F(R)$, define $A^{-1}=\{x \in K \mid x A \subseteq R\}$ and $A_{v}=\left(A^{-1}\right)^{-1}$. A finitely generated ideal J of R is called a GV-ideal if $J^{-1}=R$, denoted by $J \in \operatorname{GV}(R)$. The w-envelope of a torsion-free R-module M is the set given by

$$
M_{w}=\{x \in E(M) \mid J x \subseteq M \text { for some } J \in \mathrm{GV}(R)\}
$$

where $E(M)$ is the injective hull of M. Obviously both v and w are star operations on R. A torsion-free module M is called a w-module if $M_{w}=M$. Let $R \subseteq T$ be an extension of domains. Then T is called a w-linked extension of R if T is a w-module as an R-module. In the case that $R \subseteq T \subseteq K$, we say that T is a w-linked overring of R. For any undefined terminology and notation we refer to $[9,18]$.

2. Preliminaries

For an extension $R \subseteq T$ of domains and a T-module M, we distinguish M_{w}, the w-envelope of M as an R-module, with $M_{w(T)}$, the w-envelope of M as a T-module. That is to say, $w(T)$ stands for the w-operation on T. Let T be w-linked over R. For any fractional ideal A of T, define $w_{R}: A \mapsto A_{w}$. Then w_{R} is a star-operation on T. Let $w-\operatorname{Spec}(R)$ (resp., $\left.w-\operatorname{Max}(R)\right)$ denote the set of prime w-ideals (resp., maximal w-ideals) of R and let w_{R} - $\operatorname{Spec}(T)$ (resp., $\left.w_{R}-\operatorname{Max}(T)\right)$ denote the set of prime w_{R}-ideals (resp., maximal w_{R}-ideals) of T.

Lemma 2.1 ([18, Theorem 7.7.4 and Theorem 7.7.7]). The following statements are equivalent for an extension $R \subseteq T$ of domains.
(1) T is w-linked over R.
(2) $A \cap R$ is a w-ideal of R for any $w(T)$-ideal A of T.
(3) If $J \in \mathrm{GV}(R)$, then $J T \in \mathrm{GV}(T)$.

If one of the above statements holds, then so do the following statements.
(1) If $Q \in w_{R}-\operatorname{Spec}(T)$, then $Q \cap R \in w-\operatorname{Spec}(R)$.
(2) If $Q \in \operatorname{Spec}(T)$ and $Q \cap R \in w-\operatorname{Spec}(R)$, then $Q \in w_{R}-\operatorname{Spec}(T)$.

Clearly if A is a nonzero ideal of T, then $A \subseteq A_{w_{R}}=A_{w} \subseteq A_{w(T)}$.
Definition 2.2. Let S and T be w-linked extension domains of R with $S \subseteq T$. Then $S \subseteq T$ is said to satisfy the $w_{R^{-}}$GD property if given $P, P_{1} \in w_{R^{-}}$ $\operatorname{Spec}(S)$ with $P \subseteq P_{1}$ and $Q_{1} \in w_{R}-\operatorname{Spec}(T)$ with $Q_{1} \cap R=P_{1}$, there exists some $Q \in w_{R}-\operatorname{Spec}(T)$ such that $Q \subseteq Q_{1}$ and $Q \cap R=P$. Specially, we say that $R \subseteq T$ satisfies the w-GD property when $S=R$.

By Lemma 2.1, the w-GD property of Definition 2.2 is equivalent to the statement: Let T be w-linked over R. If given $P, P_{1} \in w$ - $\operatorname{Spec}(R)$ with $P \subseteq P_{1}$
and $Q_{1} \in \operatorname{Spec}(T)$ with $Q_{1} \cap R=P_{1}$, there exists some $Q \in \operatorname{Spec}(T)$ such that $Q \subseteq Q_{1}$ and $Q \cap R=P$.

Proposition 2.3. Let S and T be w-linked extension domains of R with $S \subseteq T$. Then the following statements are equivalent.
(1) The $w_{R^{-}} G D$ property holds.
(2) For $P \in w_{R}-\operatorname{Spec}(S)$, any prime w_{R}-ideal Q of T minimal over $P T$ contracts to P.

Proof. (1) $\Rightarrow(2)$ It is clear that $P \subseteq Q \cap S$. Since $Q \in w_{R^{-}} \operatorname{Spec}(T), Q \cap S \in w_{R^{-}}$ $\operatorname{Spec}(S)$. If $Q \cap S \neq P$, then $Q_{1} \cap S=P$ with $Q_{1} \subseteq Q$ for some $Q_{1} \in w_{R^{-}}$ $\operatorname{Spec}(T)$. Hence $P T \subseteq Q_{1}$, which is a contradiction to the minimality of Q. So $Q \cap S=P$.
$(2) \Rightarrow(1)$ For prime $w_{R^{\prime}}$-ideals P, P_{1} of S with $P \subseteq P_{1}$ and for a prime $w_{R^{-}}$ ideal Q_{1} of T with $Q_{1} \cap S=P_{1}$, there exists a prime w_{R}-ideal Q of T contained in Q_{1} such that Q is minimal over $P T$. Hence $Q \cap S=P$ by (2). So w_{R}-GD holds.

The following result shows that the w_{R}-GD property is local in some sense.
Theorem 2.4. Let S and T be w-linked extension domains of R with $S \subseteq T$. Then the following statements are equivalent.
(1) $S \subseteq T$ satisfies the $w_{R}-G D$ property.
(2) $S_{\mathfrak{p}} \subseteq T_{\mathfrak{p}}$ satisfies the $G D$ property for any $\mathfrak{p} \in w_{R}-\operatorname{Spec}(S)$, where $T_{\mathfrak{p}}=$ $T_{S \backslash \mathfrak{p}}$.
(3) $S_{\mathfrak{m}} \subseteq T_{\mathfrak{m}}$ satisfies the $G D$ property for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$, where $T_{\mathfrak{m}}=T_{S \backslash \mathfrak{m}}$.
Proof. (1) \Rightarrow (2) Let $\mathfrak{p} \in w_{R}$ - $\operatorname{Spec}(S)$. For prime ideals $P_{\mathfrak{p}},\left(P_{1}\right)_{\mathfrak{p}}$ of $S_{\mathfrak{p}}$ with $P_{\mathfrak{p}} \subseteq\left(P_{1}\right)_{\mathfrak{p}}$ and a prime ideal $\left(Q_{1}\right)_{\mathfrak{p}}$ of $T_{\mathfrak{p}}$ with $\left(Q_{1}\right)_{\mathfrak{p}} \cap S_{\mathfrak{p}}=\left(P_{1}\right)_{\mathfrak{p}}$, it is easy to verify that $P=P_{\mathfrak{p}} \cap S$ and $P_{1}=\left(P_{1}\right)_{\mathfrak{p}} \cap S$ are both prime w_{R}-ideals of S and $P \subseteq P_{1}$. Because $Q_{1}=\left(Q_{1}\right)_{\mathfrak{p}} \cap T, Q_{1} \cap S=\left(Q_{1}\right)_{\mathfrak{p}} \cap T \cap S \cap S_{\mathfrak{p}}=\left(P_{1}\right)_{\mathfrak{p}} \cap S=P_{1}$. By (1), there exists $Q \in w_{R}-\operatorname{Spec}(T)$ with $Q \subseteq Q_{1}$ such that $Q \cap S=P$. Hence $Q_{\mathfrak{p}} \subseteq\left(Q_{1}\right)_{\mathfrak{p}}$ and $Q_{\mathfrak{p}} \cap S_{\mathfrak{p}}=P_{\mathfrak{p}}$.
$(2) \Rightarrow(3)$ This is clear.
(3) $\Rightarrow(1)$ Let P, P_{1} be prime w_{R}-ideals of S with $P \subseteq P_{1}$ and Q_{1} be a prime ideal of T with $Q_{1} \cap S=P_{1}$. Then $P \subseteq P_{1} \subseteq \mathfrak{m}$ for some $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$. So $P_{\mathfrak{m}},\left(P_{1}\right)_{\mathfrak{m}}$ are prime ideals of $S_{\mathfrak{m}}$ with $P_{\mathfrak{m}} \subseteq\left(P_{1}\right)_{\mathfrak{m}}$ and $\left(Q_{1}\right)_{\mathfrak{m}}$ is a prime ideal of $T_{\mathfrak{m}}$ with $\left(Q_{1}\right)_{\mathfrak{m}} \cap S_{\mathfrak{m}}=\left(P_{1}\right)_{\mathfrak{m}}$. By (3), there exists a prime ideal $Q_{\mathfrak{m}}$ of $T_{\mathfrak{m}}$ such that $Q_{\mathfrak{m}} \subseteq\left(Q_{1}\right)_{\mathfrak{m}}$ and $Q_{\mathfrak{m}} \cap S_{\mathfrak{m}}=P_{\mathfrak{m}}$. Hence $Q \subseteq Q_{1}$ and $Q \cap S=P$.

Let $R[X]$ be the polynomial ring over R and $c(f)$ be the ideal of R generated by the coefficients of $f \in R[X]$. Let $*$ be a star-operation on R and $N_{*}=$ $\left\{f \in R[X] \mid c(f)_{*}=R\right\}$. In [1], an overring T is called $*$-linked over R if $T=T[X]_{N_{*}} \cap K$; equivalently, $I_{*}=R$ for a finitely generated fractional ideal I implies $(I T)_{v}=T$. Following this, if S is w-linked over R, then T is called
a w_{R}-linked overring of S if T is an overring of S and $I_{w_{R}}=S$ for a finitely generated fractional ideal I of S implies $(I T)_{v}=T$.

Proposition 2.5. Let S be w-linked over R. Then an overring T of S is a w_{R}-linked overring if and only if T is a w-module as an R-module.

Proof. Assume that T is a w_{R}-linked overring of S. For any $x \in T_{w}$, there exists some $J \in \operatorname{GV}(R)$ such that $x J \subseteq T$. Set $W=R \backslash\{0\}$. Then $T_{W}=E(T)$. Thus $T_{w} \subseteq T_{W} \subseteq F$, where F denotes the quotient field of S. So $x \in F$. Since $x J T \subseteq T, x \in(J T)^{-1}$. Obviously $(J S)_{w_{R}}=S$. By assumption, $(J T)^{-1}=T$. Thus $x \in T$, which implies $T_{w} \subseteq T$. Hence T is a w-module as an R-module.

Conversely, assume that T is a w-module over R. Let I be a finitely generated ideal of S with $I_{w_{R}}=S$. Then there exists some $J \in \operatorname{GV}(R)$ such that $J \subseteq I$. So $R=J_{w} \subseteq I_{w}$. Thus $(I T)_{w}=\left(I_{w} T_{w}\right)_{w}=T_{w}$. Since $T=T_{w}=(I T)_{w}=(I T)_{w_{R}} \subseteq(I T)_{v} \subseteq T_{v}=T, T=(I T)_{v}$. By definition, T is a w_{R}-linked overring of S.

By Proposition 2.5, the definition of w-linked overrings in [1] is exactly that of w-linked overrings in the introduction. Now we can define w_{R}-linked extensions. Let S be w-linked over R and let $S \subseteq T$ be an extension of domains. Then T is called a w_{R}-linked extension of S if T is a w-module as an R-module. In the case that $S \subseteq T \subseteq F$ where F is the quotient field of S, T is exactly a w_{R}-linked overring of S by Proposition 2.5.

Let $*$ be a star operation on R. An overring V of R is called a $*$-linked valuation overring of R if V is a $*$-linked overring of R and V is a valuation domain.

Lemma 2.6 ([2, Lemma 3.3]). The set of *-linked valuation overrings of R is the set $\left\{W \cap K \mid W\right.$ is a valuation overring of $\left.R[X]_{N_{*}}\right\}$.

Lemma 2.7. Let T be w-linked over R and Q a prime w_{R}-ideal of T. Then there exists some w_{R}-linked valuation overring V of T such that the maximal ideal of V contracts to Q.

Proof. Set $N_{w_{R}}=\left\{f \in T[X] \mid c(f)_{w_{R}}=T\right\}$. For any $f \in Q T[X]$, we have $c(f)_{w_{R}} \subseteq Q_{w_{R}}=Q \neq T$. Hence $Q T[X] \cap N_{w_{R}}=\emptyset$, which implies that $Q T[X]_{N_{w_{R}}}$ is a prime ideal of $T[X]_{N_{w_{R}}}$. By [11, Theorem 19.6], there exists a valuation overring V^{\prime} of $T[X]_{N_{w_{R}}}$ whose maximal ideal M^{\prime} lies over $Q T[X]_{N_{w_{R}}}$. Let $V=V^{\prime} \cap F$, where F denotes the quotient field of T. By Lemma 2.6, V is a w_{R}-linked valuation overring of T whose maximal ideal is $M^{\prime} \cap F$. Obviously the maximal ideal of V contracts to Q.

Proposition 2.8. Let S be w-linked over R. Then the following statements are equivalent.
(1) $S \subseteq T$ satisfies the w_{R}-GD property for every w_{R}-linked overring T of S.
(2) $S \subseteq V$ satisfies the $w_{R^{-}} G D$ property for every $w_{R^{-}}$-linked valuation overring V of S.

Proof. (1) \Rightarrow (2) This is clear.
(2) \Rightarrow (1) Let T be a w_{R}-linked overring of S and let P and P_{1} be prime w_{R}-ideals of S with $P \subseteq P_{1}$ and Q_{1} a prime ideal of T with $Q_{1} \cap S=P_{1}$. By Lemma 2.7, there exists some w_{R}-linked valuation overring V of T such that the maximal ideal M_{1} of V contracts to Q_{1}. Obviously V is also a w_{R}-linked valuation overring of S. By (2), there exists some $M \in \operatorname{Spec}(V)$ with $M \subseteq M_{1}$ such that $V \cap S=P$. Set $Q=V \cap T$. Then $Q \in \operatorname{Spec}(T)$ with $Q \subseteq Q_{1}$ and $Q \cap S=P$. Thus $S \subseteq T$ satisfies the w_{R}-GD property.

It is well known that if S is an integral extension of an integrally closed domain R, then $R \subseteq S$ satisfies the GD property [18, Theorem 5.3.29]. Next we give a w_{R}-corresponding statement of this result. Let S and T be w-linked over R with $S \subseteq T$. An element $u \in T$ is said to be w_{R}-integral (resp., w integral) over S (resp. R) if there is a nonzero finitely generated S (resp., R)-module $B \subseteq T$ such that $u B_{w} \subseteq B_{w}$. The set of elements of T which are w_{R}-integral (resp., w-integral) over S (resp., R) is called the w_{R}-integral closure of S (resp., w-integral closure of R) in T, denoted by $S_{T}^{w_{R}}$ (resp., R_{T}^{w}). It is easy to see that $S_{T}^{w_{R}}$ and R_{T}^{w} are subrings of T. In the case $T=F$, we write $S^{w_{R}}=S_{T}^{w_{R}}$ (resp., $R^{w}=R_{T}^{w}$), where F denotes the quotient field of S (resp., R). If $S_{T}^{w_{R}}=T$ (resp., $R_{T}^{w}=T$), we say that T is w_{R}-integral over S (resp., w-integral over R). R is integrally closed if and only if $R^{w}=R([18])$. For more details about w-integral elements, see [18].

Proposition 2.9. Let S and T be w-linked extension domains of R with $S \subseteq T$ and let $u \in T$. Then the following statements are equivalent.
(1) u is w_{R}-integral over S.
(2) There exists some $J=\left(a_{1}, a_{2}, \ldots, a_{t}\right) \in \operatorname{GV}(R)$ such that each $u a_{i}$ is integral over S.
(3) There exists some $J \in \operatorname{GV}(R)$ such that $u J$ is integral over S.

Proof. (2) $\Leftrightarrow(3)$ This is clear.
$(1) \Rightarrow(2)$ Let u be w_{R}-integral over S. Then there is a nonzero finitely generated S-module $B \subseteq T$ such that $u B_{w} \subseteq B_{w}$, which implies that $u B \subseteq B_{w}$. So $u B J \subseteq B$ for some $J \in \operatorname{GV}(R)$. Write $B=b_{1} S+b_{2} S+\cdots+b_{n} S$ and $J=$ $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$. Let $u b_{i} a_{j}=\sum_{s=1}^{n} r_{i j s} b_{s}$, where $1 \leq i \leq n, 1 \leq j \leq t, r_{i j s} \in S$. For any $1 \leq j \leq t$, we have

$$
u a_{j}\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{cccc}
r_{1 j 1} & r_{1 j 2} & \cdots & r_{1 j n} \\
r_{2 j 1} & r_{2 j 2} & \cdots & r_{2 j n} \\
\vdots & \vdots & & \vdots \\
r_{n j 1} & r_{n j 2} & \cdots & r_{n j n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Let $A_{j}=\left(\begin{array}{cccc}r_{1 j 1} & r_{1 j 2} & \cdots & r_{1 j n} \\ r_{2 j 1} & r_{2 j 2} & \cdots & r_{2 j n} \\ \vdots & \vdots & & \vdots \\ r_{n j 1} & r_{n j 2} & \cdots & r_{n j n}\end{array}\right)$. Then $\left(u a_{j} E_{n}-A_{j}\right)\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$, where
E_{n} is the $n \times n$ identity matrix. Hence $\left(u a_{j} E_{n}-A_{j}\right) B=0$. Because $B \neq 0$ and T is a domain, $\operatorname{det}\left(u a_{j} E_{n}-A_{j}\right)=0$, which implies $u a_{j}$ is integral over S.
$(2) \Rightarrow(1)$ If there exists some $J=\left(a_{1}, a_{2}, \ldots, a_{t}\right) \in \mathrm{GV}(R)$ such that each $u a_{i}$ is integral over S. Assume that n_{i} is the degree of the integrally dependent equation of $u a_{i}$ over S. Let $B=\sum_{s_{1}, \ldots, s_{t}}\left(u a_{1}\right)^{s_{1}}\left(u a_{2}\right)^{s_{2}} \cdots\left(u a_{t}\right)^{s_{t}} S$ where $0 \leq s_{i} \leq n_{i}$ for each $1 \leq i \leq t$. Obviously B is a finitely generated S-module and $u J B \subseteq B$. Then $u B \subseteq B_{w}$. Hence $u B_{w} \subseteq B_{w}$. Then u is w_{R}-integral over S.

Corollary 2.10. Let S and T be w-linked extension domains of R with $S \subseteq T$ and S_{T}^{c} be the integral closure of S in T.
(1) $S_{T}^{c} \subseteq S_{T}^{w_{R}} \subseteq S_{T}^{w(S)}$.
(2) $S_{T}^{w_{R}}=\left(S_{T}^{c}\right)_{w}$.

Proof. (1) It follows by the equivalence of (1) and (3) of Proposition 2.9.
(2) Let A be a nonzero finitely generated S-module. Then $A \subseteq A_{w_{R}} \subseteq A_{w(S)}$ by Lemma 2.1. Thus the result follows.

Proposition 2.11. Let S be w-linked over R. Then the following statements are equivalent.
(1) S is integrally closed.
(2) S is w_{R}-integrally closed.
(3) S is $w(S)$-integrally closed.

Proof. (1) $\Leftrightarrow(3)$ See [18, Example 7.7.14].
(1) $\Rightarrow(2)$ If S is integrally closed, then S is $w(S)$-integrally closed. By (1) and Corollary 2.10, $S \subseteq\left(S^{c}\right)_{w}=S^{w_{R}} \subseteq S^{w(S)}=S$. Then $S^{w_{R}}=S$. So S is w_{R}-integrally closed.
(2) \Rightarrow (1) If S is w_{R}-integrally closed, then $S \subseteq S^{c} \subseteq S^{w_{R}}=S$. Thus $S^{c}=S$.

Lemma 2.12. Let T be w-linked over R and M a torsion-free T-module. Then the following statements hold.
(1) $M_{Q}=\left(M_{w}\right)_{Q}$ for any $Q \in w_{R}-\operatorname{Spec}(T)$.
(2) $M_{w}=\bigcap\left\{M_{\mathfrak{m}} \mid \mathfrak{m} \in w_{R}-\operatorname{Max}(T)\right\}$.
(3) If S is w-linked over R and $S \subseteq T$, then $\left(S_{T}^{w_{R}}\right)_{\mathfrak{m}}=\left(S_{\mathfrak{m}}\right)_{T_{\mathfrak{m}}}^{c}$, where $T_{\mathfrak{m}}=T_{S \backslash \mathfrak{m}}$ and $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$.
Proof. (1) follows by the same way as the proof of [18, Theorem 6.2.16]. (2) follows by [18, Theorem 7.2.11(4)]. (3) follows by the same way as the proof of [18, Corollary 7.7.11].

Proposition 2.13. Let S and T be w-linked extension domains of R with $S \subseteq T$. Then T is w_{R}-integral over S if and only if $T_{\mathfrak{m}}$ is integral over $S_{\mathfrak{m}}$ for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$, where $T_{\mathfrak{m}}=T_{S \backslash \mathfrak{m}}$.
Proof. If T is w_{R}-integral over S, then $S_{T}^{w_{R}}=T$. By Lemma 2.12, $\left(S_{\mathfrak{m}}\right)_{T_{\mathrm{m}}}^{c}=$ $\left(S_{T}^{w_{R}}\right)_{\mathfrak{m}}=T_{\mathfrak{m}}$. Then $T_{\mathfrak{m}}$ is integral over $S_{\mathfrak{m}}$.

Conversely, if for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S), T_{\mathfrak{m}}$ is integral over $S_{\mathfrak{m}}$, then $\left(S_{\mathfrak{m}}\right)_{T_{\mathfrak{m}}}^{c}=$ $T_{\mathfrak{m}}$. By Lemma 2.12(2), $\left(S_{T}^{c}\right)_{w}=\bigcap\left\{\left(S_{T}^{c}\right)_{\mathfrak{m}} \mid \mathfrak{m} \in w_{R}-\operatorname{Max}(S)\right\}$ and $T=$ $\bigcap\left\{T_{\mathfrak{m}} \mid \mathfrak{m} \in w_{R}-\operatorname{Max}(S)\right\}$. Note that $\left(S_{T}^{c}\right)_{\mathfrak{m}}=\left(S_{\mathfrak{m}}\right)_{T_{\mathfrak{m}}}^{c}$. So $S_{T}^{w_{R}}=\left(S_{T}^{c}\right)_{w}=$ $\bigcap\left(S_{\mathfrak{m}}\right)_{T_{\mathfrak{m}}}^{c}=\bigcap T_{\mathfrak{m}}=T$.

Theorem 2.14. Let S and T be w-linked extension domains of R with $S \subseteq T$. If T is w_{R}-integral over S and S is integrally closed, then $S \subseteq T$ satisfies the $w_{R^{-}} G D$ property.

Proof. By Proposition 2.13, $T_{\mathfrak{m}}$ is integral over $S_{\mathfrak{m}}$ for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$. Note that $S_{\mathfrak{m}}$ is integrally closed. Then $S_{\mathfrak{m}} \subseteq T_{\mathfrak{m}}$ satisfies the GD property. Thus $S \subseteq T$ satisfies the w_{R}-GD property by Theorem 2.4.

3. w_{R}-GD domains

In [6], the definitions of GD domains and SGD domains were given by Dobbs: R is called a $G D$ domain if $R \subseteq T$ satisfies GD for every overring T of $R . R$ is called an $S G D$ domain if $R \subseteq R[u]$ satisfies GD for each u in K. In [8], he proved that SGD domains are exactly GD domains. Examples of GD domains are Prüfer domains and arbitrary domains of Krull dimension 1. Now we use the w_{R}-operation to generalize GD domains.

Definition 3.1. Let S be w-linked over R. Then S is called a w_{R}-GD domain if $S \subseteq T$ satisfies the w_{R}-GD property for every w_{R}-linked extension T of S. In particular, in the case $S=R$, we call R a w-GD domain.

Theorem 3.2. Let S be w-linked over R. Then the following statements are equivalent.
(1) S is a w_{R}-GD domain.
(2) $S \subseteq T$ satisfies $w_{R^{-}} G D$ for each w_{R}-linked valuation overring T.
(3) $S \subseteq(S[u])_{w}$ satisfies $w_{R^{-}} G D$ for each $u \in F$, where F is the quotient field of S.
(4) $S_{\mathfrak{m}}$ is a $G D$ domain for each $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$.
(5) $S_{\mathfrak{p}}$ is a $G D$ domain for each $\mathfrak{p} \in w_{R}-\operatorname{Spec}(S)$.

Proof. (3) $\Leftrightarrow(4) \Leftrightarrow(5) S \subseteq(S[u])_{w}$ satisfies w_{R}-GD for each $u \in F$ if and only if $S_{\mathfrak{m}} \subseteq\left((S[u])_{w}\right)_{\mathfrak{m}}$ satisfies the GD property for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$ and any $u \in F$ by Theorem 2.4, if and only if $S_{\mathfrak{m}} \subseteq\left(S[u]_{\mathfrak{m}}\right.$ satisfies the GD property for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)$ and any $u \in F$, if and only if $S_{\mathfrak{m}}$ is a GD domain for any $\mathfrak{m} \in w_{R}-\operatorname{Max}(S)\left(\left[8\right.\right.$, Theorem 1]), if and only if $S_{\mathfrak{p}}$ is a GD domain for any $\mathfrak{p} \in w_{R^{-}} \operatorname{Spec}(S)$.
$(4) \Rightarrow(1) \Rightarrow(2) \Rightarrow(3)$ These are clear by Theorem 2.4 and Proposition 2.8.

Let $*$ be a semistar operation on R and let $\mathrm{Na}(R, *)$ be the $*$-Nagata ring of R with respect to $*$, defined by $\operatorname{Na}(R, *):=R[X]_{N_{*}}$. Then $\widetilde{*}$ is also a semistar operation on R, which can be most concisely defined by $E_{\overparen{*}}:=E \mathrm{Na}(R, *) \cap K$ for all $E \in \bar{F}(R)$.

Dobbs and Sahandi ([10]) proved that R is a $\widetilde{*-G D}$ domain if and only if $R_{\mathfrak{m}}$ is a GD domain for any quasi-*-maximal ideal \mathfrak{m} ([10, Proposition 2.5]). Here $\widetilde{*}$-GD domains are the ones defined by Dobbs and Sahandi in [9]. Since $\widetilde{w}=w$ and $\widetilde{w_{R}}=w_{R}$, it follows that the two definitions of $\widetilde{w_{R}}$-GD domains in Definition 3.1 and [9, Definition 3.1] are the same. The discussion of $*$-GD domains is done mainly by the aid of $*$-Nagata rings in $[9,10,15]$. Then we can get the following three results.
Corollary 3.3 ([9, Corollary 3.14$])$. If $\mathrm{Na}(R, w)$ is a $G D$ domain, then R is a $w-G D$ domain.

Recall that R is a $P v M D$ if $R_{\mathfrak{m}}$ is a valuation domain for any maximal w ideal \mathfrak{m} of R. Let S be w-linked over R. Then S is a $P w_{R} M D$ if $S_{\mathfrak{m}}$ is a valuation domain for any maximal w_{R}-ideal \mathfrak{m} of S.
Proposition 3.4. The following statements are equivalent for a domain R.
(1) $\mathrm{Na}(R, w)$ is a $G D$ domain.
(2) R is a w-GD domain and R is a UMT domain (i.e., every upper to zero in $R[X]$ is a maximal w-ideal).
(3) R is a $w-G D$ domain and R^{w} is a $P w_{R} M D$.

Proof. (1) $\Leftrightarrow(2)$ This follows by [10, Theorem 2.6] and [3, Corollary 2.4].
$(2) \Leftrightarrow(3)$ This follows by the fact that R is a UMT domain if and only if R^{w} is a $\mathrm{P} w_{R} \mathrm{MD}([18$, Theorem 7.8.13]).

Corollary 3.5. Let S be w-linked over R. Then the following statements are equivalent.
(1) S is a $P w_{R} M D$;
(2) S is integrally closed and $\mathrm{Na}\left(S, w_{R}\right)$ is a $G D$ domain.
(3) S is integrally closed and $\mathrm{Na}\left(S, w_{R}\right)$ is a tree domain (i.e., no prime ideal of $\mathrm{Na}\left(S, w_{R}\right)$ contains incomparable prime ideals of $\left.\mathrm{Na}\left(S, w_{R}\right)\right)$.
(4) $\mathrm{Na}\left(S, w_{R}\right)$ is an integrally closed GD domain.
(5) $\mathrm{Na}\left(S, w_{R}\right)$ is an integrally closed tree domain.

Proof. This follows by [10, Corollary 2.8].
Let S be w-linked over R. Obviously if S is a GD domain, then S is a w_{R}-GD domain. By Theorem 3.2, it is clear that if S is a w_{R}-GD domain, then S is a $w(S)$-GD domain. Note that valuation domains are GD domains. Then $\mathrm{P} v \mathrm{MDs}$ are w-GD domains by Theorem 3.2. $\mathrm{P} w_{R} \mathrm{MDs}$ are $w_{R^{\prime}}$ GD domains again by Theorem 3.2.

Let S be w-linked over R. Then we get the following diagram.

But the seven arrows are not reversible in general.
The following example shows that GD (resp., w-GD) domains may not be Prüfer domains (resp., $\mathrm{P} v \mathrm{MDs}$).
Example 3.6. Let \mathbb{Z} denote the ring of integers and let $R=\mathbb{Z}[\sqrt{5}]$. Then R is a Noetherian domain of Krull dimension 1. Thus R is a GD domain, and so a w-GD. Note that R is not integrally closed because $\frac{1}{2}(1+\sqrt{5}) \notin R$ is integral over R. Then R is neither a Prüfer domain nor a $\mathrm{P} v \mathrm{MD}$.

The following example shows that w_{R}-GD domains may not be $\mathrm{P} w_{R} \mathrm{MDs}$.
Example 3.7. Let $R=\mathbb{Z}$. Since $\operatorname{GV}(R)=\{R\}$, it is clear that $S=\mathbb{Z}[\sqrt{5}]$ is w-linked over R. Obviously S is a w_{R}-GD domain. Note that $\mathrm{P} w_{R}$ MDs are integrally closed ([18, Theorem 7.7.19]). Then S is not a $\mathrm{P} w_{R} \mathrm{MD}$.

Let S be w-linked over R. Next we show that $w(S)$-GD domains are not $w_{R^{\prime}}$ GD domains and that $w_{R^{\prime}}$ GD domains are not GD domains in general. First we need the following theorem.

Theorem 3.8. Let S be w-linked over R with quotient field F. Then the following statements hold.
(1) If S is a PvMD, not a $P w_{R} M D$, then there exists $u \in F$ such that $S \subseteq(S[u])_{w}$ does not satisfy the $w_{R}-G D$ property.
(2) If S is a $P w_{R} M D$, not a Prüfer domain, then there exists $u \in F$ such that $S \subseteq S[u]$ does not satisfy the $G D$ property.
(3) If R is a PvMD, not a Prüfer domain, then there exists an element u in its quotient field K such that $R \subseteq R[u]$ does not satisfy the $G D$ property.

Example 3.9. Let S be w-linked over R. By Theorem 3.8, we know that if S is a $\mathrm{P} v \mathrm{MD}$, not a $\mathrm{P} w_{R} \mathrm{MD}$, then S is a $w(S)$-GD domain, not a w_{R}-GD domain. For example, let $R=k\left[Y, X Y, X^{2}, X^{3}\right]$ and $S=k[X, Y]$, where k is a field. Then S is a $\mathrm{P} v \mathrm{MD}$, not a $\mathrm{P} w_{R} \mathrm{MD}$ [16, Example]. Similarly, if S is a $\mathrm{P} w_{R} \mathrm{MD}$, not a Prüfer domain, then S is a w_{R}-GD domain, not a GD domain. If R is a $\mathrm{P} v \mathrm{MD}$, not a Prüfer domain, then R is a w-GD domain, not a GD domain.

In order to prove Theorem 3.8, now we give the following three lemmas.
Let M be a torsion-free R-module. Then M is said to be of finite type if there is a finitely generated R-module N contained in M such that $M_{w}=N_{w}$. Obviously a finitely generated R-module is of finite type.

Lemma 3.10. Let R be an integrally closed domain with quotient field K and $u \in K \backslash\{0\}$. If the conductor of u to $R,(R: u)=\{r \in R \mid r u \in R\}$, is of finite type and $u(R: u) \subseteq \sqrt{(R: u)}$, then $u \in R$.
Proof. Let $I=(R: u)$. Then I is a w-ideal of R and $u I$ is a ideal of R. By assumption, there is a finitely generated ideal I_{0} contained in I such that $I=\left(I_{0}\right)_{w}$, whence $u I=\left(u I_{0}\right)_{w}$. Since $u I \subseteq \sqrt{I}, u I_{0} \subseteq \sqrt{I}$. Then there is a positive integer n such that $\left(u I_{0}\right)^{n} \subseteq I$. If $n=1$, then $u I_{0} \subseteq I$. Thus $u I=\left(u I_{0}\right)_{w} \subseteq I$. Hence u is w-integral over R. Note that R is integrally closed if and only if $R^{w}=R$. Thus $u \in R$. If $n>1$, then $I_{0}\left(u^{n}\left(I_{0}\right)^{n-1}\right) \subseteq I$. Thus $\left(I_{0}\right)_{w}\left(u^{n}\left(I_{0}\right)^{n-1}\right) \subseteq I$. Therefore $u^{n}\left(I_{0}\right)^{n-1}$ is w-integral over R. Hence $u^{n}\left(I_{0}\right)^{n-1} \subseteq R$. So we have $u^{n-1}\left(I_{0}\right)^{n-1} \subseteq I$. Induction yields the result.

Let S and T be w-linked over R with $S \subseteq T$. If given a prime w_{R}-ideal P of S, there exists $Q \in w_{R^{-}} \operatorname{Spec}(T)$ satisfying $Q \cap S=P$, we say that $w_{R}-L O$ holds for the extension $S \subseteq T$. By Lemma 2.1, the definition of w_{R}-LO is equal to the statement: Let S and T be w-linked over R with $S \subseteq T$. Given a prime w_{R}-ideal P of S, there exists $Q \in \operatorname{Spec}(T)$ satisfying $Q \cap S=P$.

In [17], F. G. Wang proved that a domain R is a $\mathrm{P} v \mathrm{MD}$ if and only if R is integrally closed and the conductor of u to R is of finite type for each nonzero element u in its quotient field K. By considering Lemma 3.10, we can get the following result.
Lemma 3.11. Let S and T be w-linked over R and let F be the quotient filed of S with $S \subseteq T \subseteq F$. If S be a PvMD and $S \subseteq T$ satisfies w_{R}-LO, then $T=S$.

Proof. Let $t \in T \backslash S$ and $I=(S: t)$. Then I is a w_{R}-ideal of S. For any prime w_{R}-ideal P of S containing I, there exists $Q \in \operatorname{Spec}(T)$ such that $Q \cap S=P$. Since $I \subseteq P \subseteq Q, t I \subseteq Q$. So we have $t I \subseteq Q \cap S=P$. Therefore any prime w_{R}-ideal of S containing I contains $t I$. Note that prime ideals of S minimal over I are w_{R}-ideals ([18, Theorem 7.2.12]). Thus $t I \subseteq \sqrt{I}$, which implies $t \in S$ by Lemma 3.10, a contradiction. Thus $T=S$.

Lemma 3.12. Let S be w-linked over R with quotient field F. If $S \subseteq S[u]$ satisfies $L O$ for $u \in F$, then $S \subseteq(S[u])_{w}$ satisfies $w_{R}-L O$.
Proof. For $P \in w_{R}-\operatorname{Spec}(S)$, there exists some $Q \in \operatorname{Spec}(S[u])$ such that $Q \cap$ $S=P$ by the LO property of $S \subseteq S[u]$. It is trivial to prove that $Q_{w} \cap S=P$. Now it suffices to show that $Q_{w} \in \operatorname{Spec}\left(S[u]_{w}\right)$. It is clear that Q_{w} is an ideal of $S[u]_{w}$. For $x y \in Q_{w}$, where $x, y \in S[u]_{w}$, there exist $J_{1}, J_{2}, J \in \mathrm{GV}(R)$ such that $x J_{1}, y J_{2} \subseteq S[u]$ and $x y J_{1} J_{2} J \subseteq Q$. Then either $x J_{1} J \subseteq Q$ or $y J_{2} J \subseteq Q$. Thus either $x \in Q_{w}$ or $y \in Q_{w}$. Hence $Q_{w} \in \operatorname{Spec}\left(S[u]_{w}\right)$, as desired.
Proof of Theorem 3.8. (1) Assume the result is not true. Then we can get a contradiction. Note that S is a $\mathrm{P} w_{R} \mathrm{MD}$ if and only if $S_{\mathfrak{m}}$ is a valuation domain for any maximal w_{R}-ideal \mathfrak{m} of S ([18, Theorem 7.7.19]). Since S is
not a $\mathrm{P} w_{R} \mathrm{MD}$, there exists some maximal w_{R}-ideal \mathfrak{m} of S such that $S_{\mathfrak{m}}$ is not a valuation domain. Then there exists some $u \in F$ such that $u, u^{-1} \notin$ $S_{\mathfrak{m}}$. Note that $\mathfrak{m} S_{\mathfrak{m}}[u] \neq S_{\mathfrak{m}}[u]$ or $\mathfrak{m} S_{\mathfrak{m}}\left[u^{-1}\right] \neq S_{\mathfrak{m}}\left[u^{-1}\right]$ ([12, Theorem 55]). Without loss of generality, we assume that $\mathfrak{m} S_{\mathfrak{m}}[u] \neq S_{\mathfrak{m}}[u]$. By Theorem 2.4, $S_{\mathfrak{m}} \subseteq\left((S[u])_{w}\right)_{\mathfrak{m}}=S_{\mathfrak{m}}[u]$ satisfies the GD property. Then there is some prime ideal Q of $S_{\mathfrak{m}}[u]$ such that $Q \cap S_{\mathfrak{m}}=\mathfrak{m} S_{\mathfrak{m}}$. Note that $S_{\mathfrak{m}}$ is local. Then $S_{\mathfrak{m}} \subseteq S_{\mathfrak{m}}[u]$ satisfies LO. Obviously $S_{\mathfrak{m}}$ is w-linked over R. By Lemma 3.12, $S_{\mathfrak{m}} \subseteq\left(S_{\mathfrak{m}}[u]\right)_{w}$ satisfies w_{R}-LO. By assumption, $S_{\mathfrak{m}}$ is a PvMD. Then $S_{\mathfrak{m}}=\left(S_{\mathfrak{m}}[u]\right)_{w}$ by Lemma 3.11. Thus $u \in S_{\mathfrak{m}}$, contradicting $u \notin S_{\mathfrak{m}}$.

By the same way as the proof of (1), we can prove (2) and (3).
Then by Theorem 3.8, we can get the following result.
Proposition 3.13. (1) R is a Prüfer domain if and only if R is a PvMD and a GD domain.
(2) Let S be w-linked over R. Then S is a Prüfer domain if and only if S is a $P w_{R} M D$ and a GD domain.
(3) Let S be w-linked over R. Then S is a $P w_{R} M D$ if and only if S is a $P v M D$ and $a w_{R}-G D$ domain.

4. A new characterization of $\mathbf{P} \boldsymbol{w}_{\boldsymbol{R}} \mathrm{MDs}$

Now, we recall several concepts from [19]. Let S be w-linked over R. For S-modules M and N and for $f \in \operatorname{Hom}_{S}(M, N)$, we call f a w_{R}-monomorphism if $f_{m}: M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is a monomorphism for each maximal w_{R}-ideal \mathfrak{m} of S. An S-module M is called a w_{R}-flat module if the induced map $1 \otimes f: M \otimes_{S} A \rightarrow$ $M \otimes_{S} B$ is a w_{R}-monomorphism for any w_{R}-monomorphism $f: A \rightarrow B$. In particular, when $S=R$, we call M a w-flat module of R. It is known that an S-module M is a w_{R}-flat module if and only if $M_{\mathfrak{m}}$ is flat over $S_{\mathfrak{m}}$ for each maximal w_{R}-ideal \mathfrak{m} of S [19, Proposition 3.1.8].

It is well known that R is a Prüfer domain if and only if each overring of R is flat, if and only if each overring of R is integrally closed. In [7], Dobbs et al. proved that R is a $\mathrm{P} v \mathrm{MD}$ if and only if each t-linked overring of R is integrally closed. In [20], Xing and Wang proved that R is a $\mathrm{P} v \mathrm{MD}$ if and only if each w-linked overring of R is w-flat. By the same way as the proof of [20, Theorem $2.5]$, we can get the following proposition.
Proposition 4.1. Let S be w-linked over R. Then the following statements are equivalent.
(1) S is a $P w_{R} M D$.
(2) Each w_{R}-linked overring of S is w_{R}-flat.
(3) Each w_{R}-linked overring of S is integrally closed.

Here is a natural question. Let S be w-linked over R. If every w_{R}-linked overring of S that satisfies the w_{R}-GD property is w_{R}-flat over S, then is S precisely a $\mathrm{P} w_{R} \mathrm{MD}$? The answer is negative.

Example 4.2. Let $R=k\left[Y, X Y, X^{2}, X^{3}\right], S=k[X, Y]$, where k is a field. By Example 3.9, S is not a $\mathrm{P} w_{R} \mathrm{MD}$. Note that S is a Krull domain. Then for each $\mathfrak{m} \in w(S)-\operatorname{Max}(S), S_{\mathfrak{m}}$ is a discrete valuation domain ([18, Theorem 7.9.3]). Thus $S_{\mathfrak{m}}$ is a Prüfer domain. Obviously each overring of $S_{\mathfrak{m}}$ is flat over $S_{\mathfrak{m}}$. If T is a w_{R}-linked overring of S that satisfies the w_{R}-GD property, then $T_{\mathfrak{m}}$ is an overring of $S_{\mathfrak{m}}$. Thus $T_{\mathfrak{m}}$ is flat over $S_{\mathfrak{m}}$. Hence T is w_{R}-flat over S. Then every w_{R}-linked overring of S that satisfies the w_{R}-GD property is w_{R}-flat over S.

Let S be w-linked over R. Indeed, we have a new characterization of $\mathrm{P} w_{R} \mathrm{MDs}: S$ is a $\mathrm{P} w_{R} \mathrm{MD}$ if and only if S is a w_{R}-GD domain and every w_{R}-linked overring of S that satisfies the w_{R}-GD property is w_{R}-flat over S. To get this result, we start with the following lemma.

Lemma 4.3. Let S be w-linked over R and let F be the quotient field of S. Then S is a $P w_{R} M D$ if and only if $(S[u])_{w}$ is w_{R}-flat over S for each $u \in F$.

Proof. By Proposition 4.1, the necessity is clear.
Conversely, it suffices to show that $S_{\mathfrak{m}}$ is a valuation ring for each $\mathfrak{m} \in w_{R^{-}}$ $\operatorname{Max}(S)$. If $\frac{x}{y} \notin S_{\mathfrak{m}}$, where $x, y \in S_{\mathfrak{m}}$, then $\left(y:_{S_{\mathfrak{m}}} x\right) \subseteq \mathfrak{m} S_{\mathfrak{m}}$. Since $\left(S\left[\frac{x}{y}\right]\right)_{w}$ is w_{R}-flat over $S, S_{\mathfrak{m}}\left[\frac{x}{y}\right]=\left(S\left[\frac{x}{y}\right]\right)_{\mathfrak{m}}=\left(\left(S\left[\frac{x}{y}\right]\right)_{w}\right)_{\mathfrak{m}}$ is flat over $S_{\mathfrak{m}}$. Then $\left(y:_{S_{\mathfrak{m}}}\right.$ $x) S_{\mathfrak{m}}\left[\frac{x}{y}\right]=S_{\mathfrak{m}}\left[\frac{x}{y}\right]\left(\left[13\right.\right.$, Proposition 4.12]). Thus $1 \in\left(y:_{S_{\mathfrak{m}}} x\right) S_{\mathfrak{m}}\left[\frac{x}{y}\right]$. Assume that

$$
1=\alpha_{0}+\alpha_{1} \frac{x}{y}+\cdots+\alpha_{n} \frac{x^{n}}{y^{n}}
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \in\left(y:_{S_{\mathrm{m}}} x\right)$. Then

$$
\left(1-\alpha_{0}\right)\left(\frac{y}{x}\right)^{n}-\alpha_{1}\left(\frac{y}{x}\right)^{n-1}-\cdots-\alpha_{n-1} \frac{y}{x}-\alpha_{n}=0 .
$$

Note that $\alpha_{0} \in \mathfrak{m} S_{\mathfrak{m}}$. Then $1-\alpha_{0}$ is a unit of $S_{\mathfrak{m}}$. So $\frac{y}{x}$ is integral over $S_{\mathfrak{m}}$. Hence $S_{\mathfrak{m}}\left[\frac{y}{x}\right]$ is integral over $S_{\mathfrak{m}}$. Then $S_{m}\left[\frac{y}{x}\right]=S_{m}$ by ([14, Proposition 2]). Thus $\frac{y}{x} \in S_{m}$, which implies that $S_{\mathfrak{m}}$ is a valuation ring.

Theorem 4.4. Let S be w-linked over R. Then S is a $P w_{R} M D$ if and only if S is a $w_{R^{-}} G D$ domain and every $w_{R^{-}}$-linked overring of S that satisfies the w_{R}-GD property is w_{R}-flat over S.

Proof. Assume that S is a $w_{R^{\prime}}$-GD domain and every w_{R}-linked overring of S that satisfies the w_{R}-GD property is w_{R}-flat over S. Then $S \subseteq(S[u])_{w}$ satisfies the w_{R}-GD property for each $u \in F$ by Theorem 3.2, where F is the quotient field of S. Thus $(S[u])_{w}$ is w_{R}-flat over S. By Lemma $4.3, S$ is a $\mathrm{P} w_{R}$ MD. The converse follows from Propositions 3.13(3) and 4.1.

Corollary 4.5. R is a PvMD if and only if R is a $w-G D$ domain and every w-linked overring of R that satisfies the w-GD property is w-flat over R.

By the same way as the proof of Theorem 4.4, we can also prove that R is a Prüfer domain if and only if R is a GD domain and every overring of R that satisfies the GD property is flat over R.
Acknowledgements. The author sincerely thanks the referees for their valuable comments which improved the original version of this manuscript.

References

[1] G. W. Chang, *-Noetherian domains and the ring $D[X]_{N_{*}}$, J. Algebra 297 (2006), no. 1, 216-233. https://doi.org/10.1016/j.jalgebra.2005.08.020
[2] , Prüfer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319. https://doi.org/10.1016/j.jalgebra. 2007. 10.010
[3] G. W. Chang and M. Fontana, Uppers to zero in polynomial rings and Prüferlike domains, Comm. Algebra 37 (2009), no. 1, 164-192. https://doi.org/10.1080/ 00927870802243564
[4] J. Dawson and D. E. Dobbs, On going down in polynomial rings, Canadian J. Math. 26 (1974), 177-184. https://doi.org/10.4153/CJM-1974-017-9
[5] D. E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515-519. https://doi.org/10.2307/2039585
[6] , On going down for simple overrings. II, Comm. Algebra 1 (1974), 439-458. https://doi.org/10.1080/00927877408548715
[7] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. https: //doi.org/10.1080/00927878908823879
[8] D. E. Dobbs and I. J. Papick, On going-down for simple overrings. III, Proc. Amer. Math. Soc. 54 (1976), 35-38. https://doi.org/10. 2307/2040743
[9] D. E. Dobbs and P. Sahandi, Going-down and semistar operations, J. Algebra Appl. 8 (2009), no. 1, 83-104. https://doi.org/10.1142/S0219498809003205
[10] , On semistar Nagata rings, Prüfer-like domains and semistar going-down domains, Houston J. Math. 37 (2011), no. 3, 715-731.
[11] R. Gilmer, Multiplicative Ideal Theory, corrected reprint of the 1972 edition, Queen's Papers in Pure and Applied Mathematics, 90, Queen's University, Kingston, ON, 1992.
[12] I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, MA, 1970.
[13] Max. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
[14] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799. https://doi.org/10.2307/2033925
[15] P. Sahandi and N. Shirmohammadi, On a subclass of semistar going-down domains, Int. Electron. J. Algebra 14 (2013), 53-68.
[16] F. Wang, On induced operations and UMT-domains, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 27 (2004), no. 1, 1-9.
$[17] \ldots, w$-coherence in Milnor squares, Acta Math. Sinica (Chin. Ser.) 55 (2012), no. 1, 65-76.
[18] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
[19] S. Xing, On w-operation and the theory of extension of commutative rings, Ph.D. Thesis Sichuan Normal Univ., 2015.
[20] S. Xing and F. Wang, Overrings of Prüfer v-multiplication domains, J. Algebra Appl. 16 (2017), no. 8, 1750147, 10 pp. https://doi.org/10.1142/S021949881750147X

Dechuan Zhou
School of Science
Southwest University of Science and Technology
Mianyang 621010, P. R. China
Email address: zdechuan11119@163.com

[^0]: Received November 16, 2019; Revised June 27, 2020; Accepted August 21, 2020.
 2010 Mathematics Subject Classification. 13A15, 13G05.
 Key words and phrases. The w_{R}-GD property, w_{R}-linked extension, w_{R}-GD domain, $\mathrm{P} w_{R} \mathrm{MD}$.

 This work was financially supported by the doctoral foundation of Southwest University of Science and Technology (No. 17zx7144).

