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A NOTE ON w-GD DOMAINS

Dechuan Zhou

Abstract. Let S and T be w-linked extension domains of a domain

R with S ⊆ T . In this paper, we define what satisfying the wR-GD

property for S ⊆ T means and what being wR- or w-GD domains for T
means. Then some sufficient conditions are given for the wR-GD property

and wR-GD domains. For example, if T is wR-integral over S and S is
integrally closed, then the wR-GD property holds. It is also given that S

is a wR-GD domain if and only if S ⊆ T satisfies the wR-GD property

for each wR-linked valuation overring T of S, if and only if S ⊆ (S[u])w
satisfies the wR-GD property for each element u in the quotient field of

S, if and only if Sm is a GD domain for each maximal wR-ideal m of S.

Then we focus on discussing the relationship among GD domains, w-GD
domains, wR-GD domains, Prüfer domains, PvMDs and PwRMDs, and

also provide some relevant counterexamples. As an application, we give

a new characterization of PwRMDs. We show that S is a PwRMD if and
only if S is a wR-GD domain and every wR-linked overring of S that

satisfies the wR-GD property is wR-flat over S. Furthermore, examples

are provided to show these two conditions are necessary for PwRMDs.

1. Introduction

In this paper, we assume that R is an integral domain with quotient field
K. An overring of R means a subring of K containing R. In 1974, Dobbs
([6]) introduced the notion of GD domains, i.e., an integral domain R is called
a GD domain if R ⊆ T satisfies the going-down (GD for short) property for
each overring T of R. In 1976, Dobbs proved that R is a GD domain if and
only if R ⊆ T satisfies the GD property for each integral domain T contain-
ing R ([8, Theorem 1]). Examples of GD domains are Prüfer domains and
arbitrary domains of Krull dimension 1. GD has been figured prominently in
the characterization of several kinds of domains. For example, R is a Bézout
domain if and only if R is a GCD and R ⊆ R[u] satisfies GD for all u ∈ K
([4, Corollary 4.3]). And R is Prüfer if and only if R is an integrally closed
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FC domain (i.e., domains for which every intersection of two principal ideals is
finitely generated) and R ⊆ R[u] satisfies GD for all u ∈ K ([5, Corollary 4]).

Since (semi)star operations ∗ on domains were introduced several decades
ago, many researchers have been studying the ∗-version of classical theorems
on domains. In 2009, Dobbs and Sahandi ([9]) introduced ∗-GD domains: R is
called a ∗-GD domain if for every overring T of R and every semistar operation

∗′ on T , the extension R ⊆ T satisfies (∗, ∗̃′)-GD property ([9, Definition 3.1]).
Here an extension R ⊆ T of domains is said to satisfy the (∗, ∗′)-GD property if
whenever P0 ⊆ P are quasi-∗-prime ideals of R and Q is a quasi-∗′-prime ideal
of T such that Q∩R = P , there exists a quasi-∗′-prime ideal Q0 of T such that
Q0 ⊆ Q and Q0 ∩R = P0, where ∗ and ∗′ are semistar operations on R and T
respectively ([9, Definition 2.1]). And ∗-GD domains are discussed mainly by
the aid of ∗-Nagata domains in the three papers [9, 10,15].

In this paper, we pay close attention to the corresponding GD domains of a
specific star operation, i.e., the w-operation. Analogously to the GD-property,
a w-linked extension S ⊆ T of domains over R is said to satisfy the wR-GD
property if given P1, P2 ∈ wR-Spec(S) with P1 ⊆ P2 and Q2 ∈ wR-Spec(T )
with Q2 ∩ S = P2, there exists some Q1 ∈ wR-Spec(T ) such that Q1 ⊆ Q2 and
Q1 ∩ S = P1. In particular, when S = R, then R ⊆ T is said to satisfy the
w-GD property. Finally S (resp., R) is called a wR-GD (resp., w-GD) domain
if S ⊆ T (resp., R ⊆ T ) satisfies the wR-GD (resp., w-GD) property for each
wR-linked (resp., w-linked) extension T over S (resp., R). Then it is natural
to ask whether the definition of w-GD domains here is the same as that of the
specific w-case of ∗-GD domains introduced by Dobbs and Sahandi ([9]). Of
course, the answer is positive. It depends on the following characterizations of
wR-GD domains. Let S be a w-linked extension domain over R and let F be
the quotient field of S. Then S is a wR-GD domain if and only if S ⊆ T satisfies
the wR-GD property for each wR-linked valuation overring T of S, if and only
if S ⊆ (S[u])w satisfies the wR-GD property for each u ∈ F , if and only if Sm

is a GD domain for each maximal wR-ideal m of S (Theorem 3.2). In Section
3, we also point out the relationship among GD domains, w-GD domains, wR-
GD domains, Prüfer domains, PvMDs and PwRMDs, and provide the relative
counterexamples. In Section 4, we discuss the ring S whose wR-linked overring
that satisfies the wR-GD property is wR-flat over S. It is easy to show that a
PwRMD is such a ring, but the converse does not hold. Indeed, S is a PwRMD
if and only if S is not only such a ring, but also a wR-GD domain.

Now we recall some notions. Let F (R) be the set of all nonzeroR-submodules
of K and let F (R) be the set of nonzero fractional ideals of R. A mapping
F (R) → F (R), A 7→ A∗ is called a semistar operation on R if for any nonzero
x ∈ K and A,B ∈ F (R), the following conditions hold: (1) (xA)∗ = xA∗. (2)
A ⊆ A∗ and A ⊆ B implies that A∗ ⊆ B∗. (3) (A∗)∗ = A∗. A star operation on
R is exactly the restriction on F (R) of a semistar operation on R with R∗ = R.
Let ∗ be a semistar (resp., star) operation. Then an ideal I of R is called a
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quasi-∗-ideal (resp., ∗-ideal) if I∗ ∩ R = I (resp., I = I∗). A prime ideal P of
R is a quasi-∗-prime ideal (resp., prime ∗-ideal) if P is a quasi-∗-ideal (resp.,
∗-ideal). An ideal m of R is a quasi-∗-maximal ideal (resp., a maximal ∗-ideal)
if m is maximal in the set of all proper quasi-∗-ideals (resp., ∗-ideals) of R.
Note that each quasi-∗-maximal ideal (resp., maximal ∗-ideal) is prime. For
an A ∈ F (R), define A−1 = {x ∈ K |xA ⊆ R} and Av = (A−1)−1. A finitely
generated ideal J of R is called a GV-ideal if J−1 = R, denoted by J ∈GV(R).
The w-envelope of a torsion-free R-module M is the set given by

Mw = {x ∈ E(M) | Jx ⊆M for some J ∈GV(R)},
where E(M) is the injective hull of M . Obviously both v and w are star
operations on R. A torsion-free module M is called a w-module if Mw = M .
Let R ⊆ T be an extension of domains. Then T is called a w-linked extension
of R if T is a w-module as an R-module. In the case that R ⊆ T ⊆ K, we say
that T is a w-linked overring of R. For any undefined terminology and notation
we refer to [9, 18].

2. Preliminaries

For an extension R ⊆ T of domains and a T -module M , we distinguish Mw,
the w-envelope of M as an R-module, with Mw(T ), the w-envelope of M as a
T -module. That is to say, w(T ) stands for the w-operation on T . Let T be
w-linked over R. For any fractional ideal A of T , define wR : A 7→ Aw. Then
wR is a star-operation on T . Let w-Spec(R) (resp., w-Max(R)) denote the set
of prime w-ideals (resp., maximal w-ideals) of R and let wR-Spec(T ) (resp.,
wR-Max(T )) denote the set of prime wR-ideals (resp., maximal wR-ideals) of
T .

Lemma 2.1 ([18, Theorem 7.7.4 and Theorem 7.7.7]). The following state-
ments are equivalent for an extension R ⊆ T of domains.

(1) T is w-linked over R.
(2) A ∩R is a w-ideal of R for any w(T )-ideal A of T .
(3) If J ∈ GV(R), then JT ∈ GV(T ).
If one of the above statements holds, then so do the following statements.
(1) If Q ∈ wR-Spec(T ), then Q ∩R ∈ w-Spec(R).
(2) If Q ∈ Spec(T ) and Q ∩R ∈ w-Spec(R), then Q ∈ wR-Spec(T ).

Clearly if A is a nonzero ideal of T , then A ⊆ AwR
= Aw ⊆ Aw(T ).

Definition 2.2. Let S and T be w-linked extension domains of R with S ⊆ T .
Then S ⊆ T is said to satisfy the wR-GD property if given P , P1 ∈ wR-
Spec(S) with P ⊆ P1 and Q1 ∈ wR-Spec(T ) with Q1 ∩ R = P1, there exists
some Q ∈ wR-Spec(T ) such that Q ⊆ Q1 and Q ∩ R = P . Specially, we say
that R ⊆ T satisfies the w-GD property when S = R.

By Lemma 2.1, the w-GD property of Definition 2.2 is equivalent to the
statement: Let T be w-linked over R. If given P , P1 ∈ w-Spec(R) with P ⊆ P1
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and Q1 ∈ Spec(T ) with Q1 ∩R = P1, there exists some Q ∈ Spec(T ) such that
Q ⊆ Q1 and Q ∩R = P .

Proposition 2.3. Let S and T be w-linked extension domains of R with S ⊆ T .
Then the following statements are equivalent.

(1) The wR-GD property holds.
(2) For P ∈ wR-Spec(S), any prime wR-ideal Q of T minimal over PT

contracts to P .

Proof. (1)⇒(2) It is clear that P ⊆ Q∩S. Since Q ∈ wR-Spec(T ), Q∩S ∈ wR-
Spec(S). If Q ∩ S 6= P , then Q1 ∩ S = P with Q1 ⊆ Q for some Q1 ∈ wR-
Spec(T ). Hence PT ⊆ Q1, which is a contradiction to the minimality of Q. So
Q ∩ S = P .

(2)⇒(1) For prime wR-ideals P, P1 of S with P ⊆ P1 and for a prime wR-
ideal Q1 of T with Q1∩S = P1, there exists a prime wR-ideal Q of T contained
in Q1 such that Q is minimal over PT . Hence Q ∩ S = P by (2). So wR-GD
holds. �

The following result shows that the wR-GD property is local in some sense.

Theorem 2.4. Let S and T be w-linked extension domains of R with S ⊆ T .
Then the following statements are equivalent.

(1) S ⊆ T satisfies the wR-GD property.
(2) Sp ⊆ Tp satisfies the GD property for any p ∈ wR-Spec(S), where Tp =

TS\p.
(3) Sm ⊆ Tm satisfies the GD property for any m ∈ wR-Max(S), where

Tm = TS\m.

Proof. (1) ⇒ (2) Let p ∈ wR-Spec(S). For prime ideals Pp, (P1)p of Sp with
Pp ⊆ (P1)p and a prime ideal (Q1)p of Tp with (Q1)p∩Sp = (P1)p, it is easy to
verify that P = Pp ∩ S and P1 = (P1)p ∩ S are both prime wR-ideals of S and
P ⊆ P1. Because Q1 = (Q1)p∩T , Q1∩S = (Q1)p∩T ∩S∩Sp = (P1)p∩S = P1.
By (1), there exists Q ∈ wR-Spec(T ) with Q ⊆ Q1 such that Q∩S = P . Hence
Qp ⊆ (Q1)p and Qp ∩ Sp = Pp.

(2)⇒ (3) This is clear.
(3)⇒ (1) Let P, P1 be prime wR-ideals of S with P ⊆ P1 and Q1 be a prime

ideal of T with Q1 ∩ S = P1. Then P ⊆ P1 ⊆ m for some m ∈ wR-Max(S). So
Pm, (P1)m are prime ideals of Sm with Pm ⊆ (P1)m and (Q1)m is a prime ideal
of Tm with (Q1)m ∩ Sm = (P1)m. By (3), there exists a prime ideal Qm of Tm
such that Qm ⊆ (Q1)m and Qm∩Sm = Pm. Hence Q ⊆ Q1 and Q∩S = P . �

Let R[X] be the polynomial ring over R and c(f) be the ideal of R generated
by the coefficients of f ∈ R[X]. Let ∗ be a star-operation on R and N∗ =
{f ∈ R[X] | c(f)∗ = R}. In [1], an overring T is called ∗-linked over R if
T = T [X]N∗ ∩K; equivalently, I∗ = R for a finitely generated fractional ideal
I implies (IT )v = T . Following this, if S is w-linked over R, then T is called
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a wR-linked overring of S if T is an overring of S and IwR
= S for a finitely

generated fractional ideal I of S implies (IT )v = T .

Proposition 2.5. Let S be w-linked over R. Then an overring T of S is a
wR-linked overring if and only if T is a w-module as an R-module.

Proof. Assume that T is a wR-linked overring of S. For any x ∈ Tw, there exists
some J ∈ GV(R) such that xJ ⊆ T . Set W = R\{0}. Then TW = E(T ). Thus
Tw ⊆ TW ⊆ F , where F denotes the quotient field of S. So x ∈ F . Since
xJT ⊆ T , x ∈ (JT )−1. Obviously (JS)wR

= S. By assumption, (JT )−1 = T .
Thus x ∈ T , which implies Tw ⊆ T . Hence T is a w-module as an R-module.

Conversely, assume that T is a w-module over R. Let I be a finitely gen-
erated ideal of S with IwR

= S. Then there exists some J ∈ GV(R) such
that J ⊆ I. So R = Jw ⊆ Iw. Thus (IT )w = (IwTw)w = Tw. Since
T = Tw = (IT )w = (IT )wR

⊆ (IT )v ⊆ Tv = T , T = (IT )v. By definition, T is
a wR-linked overring of S. �

By Proposition 2.5, the definition of w-linked overrings in [1] is exactly
that of w-linked overrings in the introduction. Now we can define wR-linked
extensions. Let S be w-linked over R and let S ⊆ T be an extension of domains.
Then T is called a wR-linked extension of S if T is a w-module as an R-module.
In the case that S ⊆ T ⊆ F where F is the quotient field of S, T is exactly a
wR-linked overring of S by Proposition 2.5.

Let ∗ be a star operation on R. An overring V of R is called a ∗-linked
valuation overring of R if V is a ∗-linked overring of R and V is a valuation
domain.

Lemma 2.6 ([2, Lemma 3.3]). The set of ∗-linked valuation overrings of R is
the set {W ∩K |W is a valuation overring of R[X]N∗}.

Lemma 2.7. Let T be w-linked over R and Q a prime wR-ideal of T . Then
there exists some wR-linked valuation overring V of T such that the maximal
ideal of V contracts to Q.

Proof. Set NwR
= {f ∈ T [X] | c(f)wR

= T}. For any f ∈ QT [X], we have
c(f)wR

⊆ QwR
= Q 6= T . Hence QT [X] ∩ NwR

= ∅, which implies that
QT [X]NwR

is a prime ideal of T [X]NwR
. By [11, Theorem 19.6], there exists a

valuation overring V
′
of T [X]NwR

whose maximal ideal M
′
lies over QT [X]NwR

.

Let V = V
′ ∩F , where F denotes the quotient field of T . By Lemma 2.6, V is

a wR-linked valuation overring of T whose maximal ideal is M
′ ∩F . Obviously

the maximal ideal of V contracts to Q. �

Proposition 2.8. Let S be w-linked over R. Then the following statements
are equivalent.

(1) S ⊆ T satisfies the wR-GD property for every wR-linked overring T of
S.
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(2) S ⊆ V satisfies the wR-GD property for every wR-linked valuation over-
ring V of S.

Proof. (1)⇒ (2) This is clear.
(2) ⇒ (1) Let T be a wR-linked overring of S and let P and P1 be prime

wR-ideals of S with P ⊆ P1 and Q1 a prime ideal of T with Q1 ∩ S = P1. By
Lemma 2.7, there exists some wR-linked valuation overring V of T such that
the maximal ideal M1 of V contracts to Q1. Obviously V is also a wR-linked
valuation overring of S. By (2), there exists some M ∈ Spec(V ) with M ⊆M1

such that V ∩ S = P . Set Q = V ∩ T . Then Q ∈ Spec(T ) with Q ⊆ Q1 and
Q ∩ S = P . Thus S ⊆ T satisfies the wR-GD property. �

It is well known that if S is an integral extension of an integrally closed
domain R, then R ⊆ S satisfies the GD property [18, Theorem 5.3.29]. Next
we give a wR-corresponding statement of this result. Let S and T be w-linked
over R with S ⊆ T . An element u ∈ T is said to be wR-integral (resp., w-
integral) over S (resp. R) if there is a nonzero finitely generated S (resp.,
R)-module B ⊆ T such that uBw ⊆ Bw. The set of elements of T which
are wR-integral (resp., w-integral) over S (resp., R) is called the wR-integral
closure of S (resp., w-integral closure of R) in T , denoted by SwR

T (resp., Rw
T ).

It is easy to see that SwR

T and Rw
T are subrings of T . In the case T = F , we

write SwR = SwR

T (resp., Rw = Rw
T ), where F denotes the quotient field of S

(resp., R). If SwR

T = T (resp., Rw
T = T ), we say that T is wR-integral over S

(resp., w-integral over R). R is integrally closed if and only if Rw = R ([18]).
For more details about w-integral elements, see [18].

Proposition 2.9. Let S and T be w-linked extension domains of R with S ⊆ T
and let u ∈ T . Then the following statements are equivalent.

(1) u is wR-integral over S.
(2) There exists some J = (a1, a2, . . . , at) ∈ GV(R) such that each uai is

integral over S.
(3) There exists some J ∈ GV(R) such that uJ is integral over S.

Proof. (2)⇔(3) This is clear.
(1)⇒(2) Let u be wR-integral over S. Then there is a nonzero finitely gen-

erated S-module B ⊆ T such that uBw ⊆ Bw, which implies that uB ⊆ Bw.
So uBJ ⊆ B for some J ∈ GV(R). Write B = b1S + b2S + · · ·+ bnS and J =
(a1, a2, . . . , at). Let ubiaj =

∑n
s=1 rijsbs, where 1 ≤ i ≤ n, 1 ≤ j ≤ t, rijs ∈ S.

For any 1 ≤ j ≤ t, we have

uaj


b1
b2
...
bn

 =


r1j1 r1j2 · · · r1jn
r2j1 r2j2 · · · r2jn

...
...

...
rnj1 rnj2 · · · rnjn




b1
b2
...
bn

 .
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Let Aj =

 r1j1 r1j2 ··· r1jn
r2j1 r2j2 ··· r2jn

...
...

...
rnj1 rnj2 ··· rnjn

. Then (uajEn − Aj)

 b1
b2
...
bn

 =

( 0
0
...
0

)
, where

En is the n × n identity matrix. Hence (uajEn − Aj)B = 0. Because B 6= 0
and T is a domain, det(uajEn −Aj) = 0, which implies uaj is integral over S.

(2)⇒(1) If there exists some J = (a1, a2, . . . , at) ∈ GV(R) such that each
uai is integral over S. Assume that ni is the degree of the integrally dependent
equation of uai over S. Let B =

∑
s1,...,st

(ua1)s1(ua2)s2 · · · (uat)stS where
0 ≤ si ≤ ni for each 1 ≤ i ≤ t. Obviously B is a finitely generated S-module
and uJB ⊆ B. Then uB ⊆ Bw. Hence uBw ⊆ Bw. Then u is wR-integral over
S. �

Corollary 2.10. Let S and T be w-linked extension domains of R with S ⊆ T
and Sc

T be the integral closure of S in T .

(1) Sc
T ⊆ S

wR

T ⊆ Sw(S)
T .

(2) SwR

T = (Sc
T )w.

Proof. (1) It follows by the equivalence of (1) and (3) of Proposition 2.9.
(2) Let A be a nonzero finitely generated S-module. Then A ⊆ AwR

⊆ Aw(S)

by Lemma 2.1. Thus the result follows. �

Proposition 2.11. Let S be w-linked over R. Then the following statements
are equivalent.

(1) S is integrally closed.
(2) S is wR-integrally closed.
(3) S is w(S)-integrally closed.

Proof. (1)⇔ (3) See [18, Example 7.7.14].
(1) ⇒ (2) If S is integrally closed, then S is w(S)-integrally closed. By (1)

and Corollary 2.10, S ⊆ (Sc)w = SwR ⊆ Sw(S) = S. Then SwR = S. So S is
wR-integrally closed.

(2) ⇒ (1) If S is wR-integrally closed, then S ⊆ Sc ⊆ SwR = S. Thus
Sc = S. �

Lemma 2.12. Let T be w-linked over R and M a torsion-free T -module. Then
the following statements hold.

(1) MQ = (Mw)Q for any Q ∈ wR-Spec(T ).
(2) Mw =

⋂
{Mm |m ∈ wR-Max(T )}.

(3) If S is w-linked over R and S ⊆ T , then (SwR

T )m = (Sm)cTm
, where

Tm = TS\m and m ∈ wR-Max(S).

Proof. (1) follows by the same way as the proof of [18, Theorem 6.2.16]. (2)
follows by [18, Theorem 7.2.11(4)]. (3) follows by the same way as the proof of
[18, Corollary 7.7.11]. �
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Proposition 2.13. Let S and T be w-linked extension domains of R with
S ⊆ T . Then T is wR-integral over S if and only if Tm is integral over Sm for
any m ∈ wR-Max(S), where Tm = TS\m.

Proof. If T is wR-integral over S, then SwR

T = T . By Lemma 2.12, (Sm)cTm
=

(SwR

T )m = Tm. Then Tm is integral over Sm.
Conversely, if for any m ∈ wR-Max(S), Tm is integral over Sm, then (Sm)cTm

=
Tm. By Lemma 2.12(2), (Sc

T )w =
⋂
{(Sc

T )m |m ∈ wR-Max(S)} and T =⋂
{Tm |m ∈ wR-Max(S)}. Note that (Sc

T )m = (Sm)cTm
. So SwR

T = (Sc
T )w =⋂

(Sm)cTm
=
⋂
Tm = T . �

Theorem 2.14. Let S and T be w-linked extension domains of R with S ⊆ T .
If T is wR-integral over S and S is integrally closed, then S ⊆ T satisfies the
wR-GD property.

Proof. By Proposition 2.13, Tm is integral over Sm for any m ∈ wR-Max(S).
Note that Sm is integrally closed. Then Sm ⊆ Tm satisfies the GD property.
Thus S ⊆ T satisfies the wR-GD property by Theorem 2.4. �

3. wR-GD domains

In [6], the definitions of GD domains and SGD domains were given by Dobbs:
R is called a GD domain if R ⊆ T satisfies GD for every overring T of R. R
is called an SGD domain if R ⊆ R[u] satisfies GD for each u in K. In [8], he
proved that SGD domains are exactly GD domains. Examples of GD domains
are Prüfer domains and arbitrary domains of Krull dimension 1. Now we use
the wR-operation to generalize GD domains.

Definition 3.1. Let S be w-linked over R. Then S is called a wR-GD domain
if S ⊆ T satisfies the wR-GD property for every wR-linked extension T of S.
In particular, in the case S = R, we call R a w-GD domain.

Theorem 3.2. Let S be w-linked over R. Then the following statements are
equivalent.

(1) S is a wR-GD domain.
(2) S ⊆ T satisfies wR-GD for each wR-linked valuation overring T .
(3) S ⊆ (S[u])w satisfies wR-GD for each u ∈ F , where F is the quotient

field of S.
(4) Sm is a GD domain for each m ∈ wR-Max(S).
(5) Sp is a GD domain for each p ∈ wR-Spec(S).

Proof. (3)⇔ (4)⇔ (5) S ⊆ (S[u])w satisfies wR-GD for each u ∈ F if and only
if Sm ⊆ ((S[u])w)m satisfies the GD property for any m ∈ wR-Max(S) and any
u ∈ F by Theorem 2.4, if and only if Sm ⊆ (S[u])m satisfies the GD property
for any m ∈ wR-Max(S) and any u ∈ F , if and only if Sm is a GD domain for
any m ∈ wR-Max(S) ([8, Theorem 1]), if and only if Sp is a GD domain for
any p ∈ wR-Spec(S).
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(4) ⇒ (1) ⇒ (2) ⇒ (3) These are clear by Theorem 2.4 and Proposition
2.8. �

Let ∗ be a semistar operation on R and let Na(R, ∗) be the ∗-Nagata ring of
R with respect to ∗, defined by Na(R, ∗) := R[X]N∗ . Then ∗̃ is also a semistar
operation on R, which can be most concisely defined by E∗̃ := ENa(R, ∗) ∩K
for all E ∈ F (R).

Dobbs and Sahandi ([10]) proved that R is a ∗̃-GD domain if and only if
Rm is a GD domain for any quasi-∗-maximal ideal m ([10, Proposition 2.5]).
Here ∗̃-GD domains are the ones defined by Dobbs and Sahandi in [9]. Since
w̃ = w and w̃R = wR, it follows that the two definitions of w̃R-GD domains
in Definition 3.1 and [9, Definition 3.1] are the same. The discussion of ∗-GD
domains is done mainly by the aid of ∗-Nagata rings in [9,10,15]. Then we can
get the following three results.

Corollary 3.3 ([9, Corollary 3.14]). If Na(R,w) is a GD domain, then R is a
w-GD domain.

Recall that R is a PvMD if Rm is a valuation domain for any maximal w-
ideal m of R. Let S be w-linked over R. Then S is a PwRMD if Sm is a
valuation domain for any maximal wR-ideal m of S.

Proposition 3.4. The following statements are equivalent for a domain R.
(1) Na(R,w) is a GD domain.
(2) R is a w-GD domain and R is a UMT domain (i.e., every upper to zero

in R[X] is a maximal w-ideal).
(3) R is a w-GD domain and Rw is a PwRMD.

Proof. (1)⇔ (2) This follows by [10, Theorem 2.6] and [3, Corollary 2.4].
(2) ⇔ (3) This follows by the fact that R is a UMT domain if and only if

Rw is a PwRMD ([18, Theorem 7.8.13]). �

Corollary 3.5. Let S be w-linked over R. Then the following statements are
equivalent.

(1) S is a PwRMD;
(2) S is integrally closed and Na(S,wR) is a GD domain.
(3) S is integrally closed and Na(S,wR) is a tree domain (i.e., no prime

ideal of Na(S,wR) contains incomparable prime ideals of Na(S,wR)).
(4) Na(S,wR) is an integrally closed GD domain.
(5) Na(S,wR) is an integrally closed tree domain.

Proof. This follows by [10, Corollary 2.8]. �

Let S be w-linked over R. Obviously if S is a GD domain, then S is a
wR-GD domain. By Theorem 3.2, it is clear that if S is a wR-GD domain, then
S is a w(S)-GD domain. Note that valuation domains are GD domains. Then
PvMDs are w-GD domains by Theorem 3.2. PwRMDs are wR-GD domains
again by Theorem 3.2.
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Let S be w-linked over R. Then we get the following diagram.

Prüfer domain

��

+3 PwRMD

��

+3 PvMD

��
GD domain +3 wR-GD domain +3 w(S)-GD domain.

But the seven arrows are not reversible in general.
The following example shows that GD (resp., w-GD) domains may not be

Prüfer domains (resp., PvMDs).

Example 3.6. Let Z denote the ring of integers and let R = Z[
√

5]. Then R
is a Noetherian domain of Krull dimension 1. Thus R is a GD domain, and so
a w-GD. Note that R is not integrally closed because 1

2 (1 +
√

5) /∈ R is integral
over R. Then R is neither a Prüfer domain nor a PvMD.

The following example shows that wR-GD domains may not be PwRMDs.

Example 3.7. Let R = Z. Since GV(R) = {R}, it is clear that S = Z[
√

5]
is w-linked over R. Obviously S is a wR-GD domain. Note that PwRMDs are
integrally closed ([18, Theorem 7.7.19]). Then S is not a PwRMD.

Let S be w-linked over R. Next we show that w(S)-GD domains are not
wR-GD domains and that wR-GD domains are not GD domains in general.
First we need the following theorem.

Theorem 3.8. Let S be w-linked over R with quotient field F . Then the
following statements hold.

(1) If S is a PvMD, not a PwRMD, then there exists u ∈ F such that
S ⊆ (S[u])w does not satisfy the wR-GD property.

(2) If S is a PwRMD, not a Prüfer domain, then there exists u ∈ F such
that S ⊆ S[u] does not satisfy the GD property.

(3) If R is a PvMD, not a Prüfer domain, then there exists an element u in
its quotient field K such that R ⊆ R[u] does not satisfy the GD property.

Example 3.9. Let S be w-linked over R. By Theorem 3.8, we know that if
S is a PvMD, not a PwRMD, then S is a w(S)-GD domain, not a wR-GD
domain. For example, let R = k[Y,XY,X2, X3] and S = k[X,Y ], where k is
a field. Then S is a PvMD, not a PwRMD [16, Example]. Similarly, if S is a
PwRMD, not a Prüfer domain, then S is a wR-GD domain, not a GD domain.
If R is a PvMD, not a Prüfer domain, then R is a w-GD domain, not a GD
domain.

In order to prove Theorem 3.8, now we give the following three lemmas.
Let M be a torsion-free R-module. Then M is said to be of finite type if

there is a finitely generated R-module N contained in M such that Mw = Nw.
Obviously a finitely generated R-module is of finite type.
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Lemma 3.10. Let R be an integrally closed domain with quotient field K and
u ∈ K \ {0}. If the conductor of u to R, (R : u) = {r ∈ R | ru ∈ R}, is of finite

type and u(R : u) ⊆
√

(R : u), then u ∈ R.

Proof. Let I = (R : u). Then I is a w-ideal of R and uI is a ideal of R.
By assumption, there is a finitely generated ideal I0 contained in I such that
I = (I0)w, whence uI = (uI0)w. Since uI ⊆

√
I, uI0 ⊆

√
I. Then there is

a positive integer n such that (uI0)n ⊆ I. If n = 1, then uI0 ⊆ I. Thus
uI = (uI0)w ⊆ I. Hence u is w-integral over R. Note that R is integrally
closed if and only if Rw = R. Thus u ∈ R. If n > 1, then I0(un(I0)n−1) ⊆ I.
Thus (I0)w(un(I0)n−1) ⊆ I. Therefore un(I0)n−1 is w-integral over R. Hence
un(I0)n−1 ⊆ R. So we have un−1(I0)n−1 ⊆ I. Induction yields the result. �

Let S and T be w-linked over R with S ⊆ T . If given a prime wR-ideal P
of S, there exists Q ∈ wR-Spec(T ) satisfying Q ∩ S = P , we say that wR-LO
holds for the extension S ⊆ T . By Lemma 2.1, the definition of wR-LO is equal
to the statement: Let S and T be w-linked over R with S ⊆ T . Given a prime
wR-ideal P of S, there exists Q ∈ Spec(T ) satisfying Q ∩ S = P .

In [17], F. G. Wang proved that a domain R is a PvMD if and only if R is
integrally closed and the conductor of u to R is of finite type for each nonzero
element u in its quotient field K. By considering Lemma 3.10, we can get the
following result.

Lemma 3.11. Let S and T be w-linked over R and let F be the quotient filed
of S with S ⊆ T ⊆ F . If S be a PvMD and S ⊆ T satisfies wR-LO, then
T = S.

Proof. Let t ∈ T \S and I = (S : t). Then I is a wR-ideal of S. For any prime
wR-ideal P of S containing I, there exists Q ∈ Spec(T ) such that Q ∩ S = P .
Since I ⊆ P ⊆ Q, tI ⊆ Q. So we have tI ⊆ Q ∩ S = P . Therefore any prime
wR-ideal of S containing I contains tI. Note that prime ideals of S minimal
over I are wR-ideals ([18, Theorem 7.2.12]). Thus tI ⊆

√
I, which implies t ∈ S

by Lemma 3.10, a contradiction. Thus T = S. �

Lemma 3.12. Let S be w-linked over R with quotient field F . If S ⊆ S[u]
satisfies LO for u ∈ F , then S ⊆ (S[u])w satisfies wR-LO.

Proof. For P ∈ wR-Spec(S), there exists some Q ∈ Spec(S[u]) such that Q ∩
S = P by the LO property of S ⊆ S[u]. It is trivial to prove that Qw ∩S = P .
Now it suffices to show that Qw ∈ Spec(S[u]w). It is clear that Qw is an ideal
of S[u]w. For xy ∈ Qw, where x, y ∈ S[u]w, there exist J1, J2, J ∈ GV(R) such
that xJ1, yJ2 ⊆ S[u] and xyJ1J2J ⊆ Q. Then either xJ1J ⊆ Q or yJ2J ⊆ Q.
Thus either x ∈ Qw or y ∈ Qw. Hence Qw ∈ Spec(S[u]w), as desired. �

Proof of Theorem 3.8. (1) Assume the result is not true. Then we can get
a contradiction. Note that S is a PwRMD if and only if Sm is a valuation
domain for any maximal wR-ideal m of S ([18, Theorem 7.7.19]). Since S is
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not a PwRMD, there exists some maximal wR-ideal m of S such that Sm is
not a valuation domain. Then there exists some u ∈ F such that u, u−1 /∈
Sm. Note that mSm[u] 6= Sm[u] or mSm[u−1] 6= Sm[u−1] ([12, Theorem 55]).
Without loss of generality, we assume that mSm[u] 6= Sm[u]. By Theorem
2.4, Sm ⊆ ((S[u])w)m = Sm[u] satisfies the GD property. Then there is some
prime ideal Q of Sm[u] such that Q ∩ Sm = mSm. Note that Sm is local.
Then Sm ⊆ Sm[u] satisfies LO. Obviously Sm is w-linked over R. By Lemma
3.12, Sm ⊆ (Sm[u])w satisfies wR-LO. By assumption, Sm is a PvMD. Then
Sm = (Sm[u])w by Lemma 3.11. Thus u ∈ Sm, contradicting u /∈ Sm.

By the same way as the proof of (1), we can prove (2) and (3). �

Then by Theorem 3.8, we can get the following result.

Proposition 3.13. (1) R is a Prüfer domain if and only if R is a PvMD and
a GD domain.

(2) Let S be w-linked over R. Then S is a Prüfer domain if and only if S
is a PwRMD and a GD domain.

(3) Let S be w-linked over R. Then S is a PwRMD if and only if S is a
PvMD and a wR-GD domain.

4. A new characterization of PwRMDs

Now, we recall several concepts from [19]. Let S be w-linked over R. For
S-modules M and N and for f ∈ HomS(M,N), we call f a wR-monomorphism
if fm : Mm → Nm is a monomorphism for each maximal wR-ideal m of S. An
S-module M is called a wR-flat module if the induced map 1⊗ f : M ⊗S A→
M ⊗S B is a wR-monomorphism for any wR-monomorphism f : A → B. In
particular, when S = R, we call M a w-flat module of R. It is known that
an S-module M is a wR-flat module if and only if Mm is flat over Sm for each
maximal wR-ideal m of S [19, Proposition 3.1.8].

It is well known that R is a Prüfer domain if and only if each overring of R
is flat, if and only if each overring of R is integrally closed. In [7], Dobbs et al.
proved that R is a PvMD if and only if each t-linked overring of R is integrally
closed. In [20], Xing and Wang proved that R is a PvMD if and only if each
w-linked overring of R is w-flat. By the same way as the proof of [20, Theorem
2.5], we can get the following proposition.

Proposition 4.1. Let S be w-linked over R. Then the following statements
are equivalent.

(1) S is a PwRMD.
(2) Each wR-linked overring of S is wR-flat.
(3) Each wR-linked overring of S is integrally closed.

Here is a natural question. Let S be w-linked over R. If every wR-linked
overring of S that satisfies the wR-GD property is wR-flat over S, then is S
precisely a PwRMD? The answer is negative.
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Example 4.2. Let R = k[Y,XY,X2, X3], S = k[X,Y ], where k is a field.
By Example 3.9, S is not a PwRMD. Note that S is a Krull domain. Then
for each m ∈ w(S)-Max(S), Sm is a discrete valuation domain ([18, Theorem
7.9.3]). Thus Sm is a Prüfer domain. Obviously each overring of Sm is flat over
Sm. If T is a wR-linked overring of S that satisfies the wR-GD property, then
Tm is an overring of Sm. Thus Tm is flat over Sm. Hence T is wR-flat over
S. Then every wR-linked overring of S that satisfies the wR-GD property is
wR-flat over S.

Let S be w-linked over R. Indeed, we have a new characterization of
PwRMDs: S is a PwRMD if and only if S is a wR-GD domain and every
wR-linked overring of S that satisfies the wR-GD property is wR-flat over S.
To get this result, we start with the following lemma.

Lemma 4.3. Let S be w-linked over R and let F be the quotient field of S.
Then S is a PwRMD if and only if (S[u])w is wR-flat over S for each u ∈ F .

Proof. By Proposition 4.1, the necessity is clear.
Conversely, it suffices to show that Sm is a valuation ring for each m ∈ wR-

Max(S). If x
y /∈ Sm, where x, y ∈ Sm, then (y :Sm

x) ⊆ mSm. Since (S[xy ])w
is wR-flat over S, Sm[xy ] = (S[xy ])m = ((S[xy ])w)m is flat over Sm. Then (y :Sm

x)Sm[xy ] = Sm[xy ] ([13, Proposition 4.12]). Thus 1 ∈ (y :Sm
x)Sm[xy ]. Assume

that

1 = α0 + α1
x

y
+ · · ·+ αn

xn

yn
,

where α0, α1, . . . , αn ∈ (y :Sm
x). Then

(1− α0)(
y

x
)n − α1(

y

x
)n−1 − · · · − αn−1

y

x
− αn = 0.

Note that α0 ∈ mSm. Then 1 − α0 is a unit of Sm. So y
x is integral over Sm.

Hence Sm[ yx ] is integral over Sm. Then Sm[ yx ] = Sm by ([14, Proposition 2]).
Thus y

x ∈ Sm, which implies that Sm is a valuation ring. �

Theorem 4.4. Let S be w-linked over R. Then S is a PwRMD if and only
if S is a wR-GD domain and every wR-linked overring of S that satisfies the
wR-GD property is wR-flat over S.

Proof. Assume that S is a wR-GD domain and every wR-linked overring of S
that satisfies the wR-GD property is wR-flat over S. Then S ⊆ (S[u])w satisfies
the wR-GD property for each u ∈ F by Theorem 3.2, where F is the quotient
field of S. Thus (S[u])w is wR-flat over S. By Lemma 4.3, S is a PwRMD. The
converse follows from Propositions 3.13(3) and 4.1. �

Corollary 4.5. R is a PvMD if and only if R is a w-GD domain and every
w-linked overring of R that satisfies the w-GD property is w-flat over R.
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By the same way as the proof of Theorem 4.4, we can also prove that R is
a Prüfer domain if and only if R is a GD domain and every overring of R that
satisfies the GD property is flat over R.

Acknowledgements. The author sincerely thanks the referees for their valu-
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