• Title/Summary/Keyword: integral distribution

Search Result 430, Processing Time 0.028 seconds

Slip-Related Changes in Plantar Pressure Distribution, and Parameters for Early Detection of Slip Events

  • Choi, Seungyoung;Cho, Hyungpil;Kang, Boram;Lee, Dong Hun;Kim, Mi Jung;Jang, Seong Ho
    • Annals of Rehabilitation Medicine
    • /
    • v.39 no.6
    • /
    • pp.897-904
    • /
    • 2015
  • Objective To investigate differences in plantar pressure distribution between a normal gait and unpredictable slip events to predict the initiation of the slipping process. Methods Eleven male participants were enrolled. Subjects walked onto a wooden tile, and two layers of oily vinyl sheet were placed on the expected spot of the 4th step to induce a slip. An insole pressure-measuring system was used to monitor plantar pressure distribution. This system measured plantar pressure in four regions (the toes, metatarsal head, arch, and heel) for three events: the step during normal gait; the recovered step, when the subject recovered from a slip; and the uncorrected, harmful slipped step. Four variables were analyzed: peak pressure (PP), contact time (CT), the pressure-time integral (PTI), and the instant of peak pressure (IPP). Results The plantar pressure pattern in the heel was unique, as compared with other parts of the sole. In the heel, PP, CT, and PTI values were high in slipped and recovered steps compared with normal steps. The IPP differed markedly among the three steps. The IPPs in the heel for the three events were, in descending order (from latest to earliest), slipped, recovered, and normal steps, whereas in the other regions the order was normal, recovered, and slipped steps. Finally, the metatarsal head-to-heel IPP ratios for the normal, recovered, and slipped steps were $6.1{\pm}2.9$, $3.1{\pm}3.0$, and $2.2{\pm}2.5$, respectively. Conclusion A distinctive plantar pressure pattern in the heel might be useful for early detection of a slip event to prevent slip-related injuries.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method (시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여)

  • Jang, Hae-Won;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • The time-domain solution from the Kirchhoff integral equation for an exterior problem is not unique at certain eigen-frequencies associated with the fictitious internal modes as happening in frequency-domain analysis. One of the solution methods is the CHIEF (Combined Helmholtz Integral Equation Formulation) approach, which is based on employing additional zero-pressure constraints at some interior points inside the body. Although this method has been widely used in frequency-domain boundary element method due to its simplicity, it was not used in time-domain analysis. In this work, the CHIEF approach is formulated appropriately for time-domain acoustic boundary element method by constraining the unknown surface pressure distribution at the current time, which was obtained by setting the pressure at the interior point to be zero considering the shortest retarded time between boundary nodes and interior point. Sound radiation of a pulsating sphere was used as a test example. By applying the CHIEF method, the low-order fictitious modes could be damped down satisfactorily, thus solving the non-uniqueness problem. However, it was observed that the instability due to high-order fictitious modes, which were beyond the effective frequency, was increased.

Analysis of Motion Response and Drift Force in Waves for the Floating-Type Ocean Monitoring Facilities (부유식 해상관측시설의 파랑중 운동 및 표류력 해석)

  • YOON Gil Su;KIM Yong Jig;KIM Dong Jun;KANG Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.202-209
    • /
    • 1998
  • A three-dimensional numerical method based on the Green's integral equation is developed to predict the motion response and drift force in waves for the ocean monitoring facilities. In this method, we use source and doublet distribution, and triangular and rectangular eliments. To eliminate the irregular frequency phenomenon, the method of improved integral equation is applied and the time-mean drift force is calculated by the method of direct pressure integration over the body surface. To conform the validity of the present numerical method, some calculations for the floating sphere are performed and it is shown that the present method provides sufficiently reliable results. As a calculation example for the real facilities, the motion response and the drift force of the vertical cylinder type ocean monitoring buoy with 2.6 m diameter and 3,77 m draft are calculated and discussed. The obtained results of motion response can be used to determine the shape and dimension of the buoy to reduce the motion response, and other data such as the effect of motion reduction due to a damper can be predictable through these motion calculations. Also, the calculation results of drift force can be used in the design procedure of mooring system to predict the maximum wave load acting on the mooring system. The present method has, in principle, no restriction in the application to the arbitrary shape facilities. So, this method can be a robust tool for the design, installation, and operation of various kinds of the floating-type ocean monitoring facilities.

  • PDF

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

A study on the estimation of bubble size distribution using an acoustic inversion method (음향 역산법을 이용한 기포의 크기 분포 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.151-162
    • /
    • 2020
  • This paper presents an acoustic inversion method for estimating the bubble size distribution. The estimation error of the attenuation coefficient represented by a Fredholm integral equation of the first kind is defined as an objective function, and an optimal solution is found by applying the Levenberg-Marquardt (LM) method. In order to validate the effectiveness of the inversion method, numerical simulations using two types of bubble distribution are performed. In addition, a series of experiments are carried out in a water tank (1.0 m × 0.54 m × 0.6 m), using bubbles generated by three different generators. Images of the distributed bubbles are obtained by a high-speed camera, and the insertion losses of the bubble layer are measured using a source and a hydrophone. The image is post-processed to glance a distribution characteristics of each bubble generator. Finally, the size distribution of bubbles is estimated by applying the inversion method to the measured insertion loss. From the inversion results, it was observed that the number of bubbles increases exponentially as the bubble size decreases, and then increases again after the local peak at 70 ㎛ - 120 ㎛.

On the Evaluation of Physical Distribution Service in Ports (항만물류서비스의 평가에 관하여)

    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.17-29
    • /
    • 1996
  • It is required to consider pricing and non-pricing factors and external economy in order to achieve the objects of physical distribution system in a port. Recently, among the three factors, much attention has been paid to non-pricing factor in the system. Although physical distribution service in a port(PDSP)has been frequently mentioned in documents and literature related to port and shipping studies, few study on it has not been systematically and scientifically made due to the following problems; $\circ$ there are not proper criteria to evaluate level and quality of PDSP and as a result it is difficult to set up a unified standard for doing so. $\circ$ algorithms to evaluate problems with complex and ambiguous attributes and multiple levels in PDSP are not available. This thesis aims to establish a paradigm to evaluate PDSP and to abvance existing decision making methods to deal with complex and ambiguous problems in PDSP. To tackle the first purpose, extensive and thorough literature survey was carried out on general physical distribution service, which is a corner stone to handle PDSp. In addition, through interviews and questionnaire to the expert, it have extracted 82 factors of physical distribution service in a port. They have been classified into 6 groups by KJ method and each group defined by the expert's advice as follows; a. Potentiality b. Exactness c. safety d. Speediness e. Convenience f. Linkage Prior to the service evaluation, many kinds of its attributes must be identified on the basis of rational decision owing to complexity and ambiguity inherent in PDSP. An analytical hierarchy process (AHP) is a method to evaluate them but it is not applicable to PDSP that have property of non-additivity and overlapped attributes. Therefore, probablility measure can not be used to evaluate PDSP but fuzzy measure is required. Hierarchical fuzzy integral method, which is merged AHP with fuzzy measure, is also not effective method to evaluate attributes because it has vary complicated way to calculate fuzzy measure identification coefficient of attributes. A new evaluation algorithm has been introduced to solve problems with multi-attribute and multi-level hierarchy, which is called hierarchy fuzzy process(HFP).Analysis on ambiguous aspects of PDSP under study which is not easy to be defined is prerequisite to evaluate it. HFP is different from algorithm existed in that it clarified the relationship between fuzzy measure and probability measure adopted in AHP and that it directly calculates the family of fuzzy measure from overlapping coefficient and probability measure to treat and evaluate ambiguous and complex aspects of PDSP. A new evaluation algorithm HFP was applied to evaluate level of physical distribution service in the biggest twenty container port in the world. The ranks of the ports are as follows; 1. Rotterdam Port, 2. Hamburg Port, 3. Singapore Port, 4. Seattle Port, 5. Yokohama Port, 6. Long beach Port, 7. Oakland Port, 8. Tokyo Port, 9. Hongkong Port, 10. Kobe Port, 11. Los Angeles Port, 12. New york Port, 13. Antwerp Port, 14. Felixstowe Port, 15. Bremerhaven Port, 16. Le'Havre Port, 17. Kaoshung Port, 18. Killung Port, 19. Bangkok Port, 20. Pusan Port

  • PDF

Effect of the type of sand on the fracture and mechanical properties of sand concrete

  • Belhadj, Belkacem;Bederina, Madani;Benguettache, Khadra;Queneudec, Michele
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The principal objective of this study is to deepen the characterization studies already led on sand concretes in previous works. Indeed, it consists in studying the effect of the sand type on the main properties of sand concrete: fracture and mechanical properties. We particularly insist on the determination of the fracture characteristics of this material which apparently have not been studied. To carry out this study, four different types of sand have been used: dune sand (DS), river sand (RS), crushed sand (CS) and river-dune sand (RDS). These sands differ in mineralogical nature, grain shape, angularity, particle size, proportion of fine elements, etc. The obtained results show that the particle size distribution of sand has marked its influence in all the studied properties of sand concrete since the sand having the highest diameter and the best particle size distribution has given the best fracture and mechanical properties. The grain shape, the angularity and the nature of sand have also marked their influence: thanks to its angularity and its limestone nature, crushed sand yielded good results compared to river and dune sands which are characterized by rounded shape and siliceous nature. Finally, it should further be noted that the sand concrete presents values of fracture and mechanical properties slightly lower than those of ordinary concrete. Compared to mortar, although the mechanical strength is lower, the fracture parameters are almost comparable. In all cases, the sand grains are debonded from the paste cement during the fracture which means that the crack goes through the paste-aggregate interface.

Significance of Urease Distribution across Helicobacter pylori Membrane

  • Gang, Jin-Gu;Yun, Soon-Kyu;Choi, Kyung-Min;Lim, Wang-Jin;Park, Jeong-Kyu;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.317-325
    • /
    • 2001
  • For heuristic purposes, the relative ratio of urease contents inside and outside cells was surveyed using nine ureB+ strains of Helicobacter pylori. the ratio of the enzyme specific activity appeared to vary greatly between the various H. pylori strains, ranging from 0.5 to 2.5. Besides the above compartment, urease was also richly found in the membrane fraction, especially in either peripheral or integral form. The urease distribution across the H. pylori membrane was significantly influenced by the ambient pH; the specific activity of external urease was highest at pH 5.5 with a narrow plateau, whereas the internal specific activity was highest within a pH range of 4.5 to 6.5 with a broad plateau. These finding strongly suggest that H. pylori urease is secretory and responded to the external pH. However, at pH 4.0 or below, no urease activity was detected in either the internal or external compartment, although an increase in the color development with 2,4,6-trinitrobenzene sulfonate (TNBS) was observed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that these phenomena may be related to a specific proteolysis in certain proteins, including urease or ${\gamma}$-glutamyl transpeptidase. Interestingly, the effect of ammonium ions n alleviating the enzyme inactivation inside the H. pylori cells was remarkably similar to that of D-glucose. In addition, it would appear that the cation acted as a surrogate of not only $Na^+$ but also $K^+$ thereby increasing the H. pylori P-type ATPase activity. This is of great interest, as it implies that the urease action in H. pylori is indispensible at any locus.

  • PDF