• Title/Summary/Keyword: integral constant

Search Result 285, Processing Time 0.025 seconds

Study of the Constant Current Fuzzy Control System Design using CRS Algorithm during Inverter DC Resistance Spot Welding Process (인버터 DC 저항점용접 공정에서 CRS 알고리즘을 이용한 정전류 퍼지 제어시스템 설계에 관한 연구)

  • Park, Hyoung-Jin;Park, Pyeong-Won;Yu, Ji-Young;Kim, Dong-Cheol;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • The purpose of this study is to propose a method to decide near-optimal settings of the constant current fuzzy control parameters using a controlled random search. This method tries to find the near-optimal settings of the constant current fuzzy control parameters through experiments. It has an advantage of being able to carry out searches in the search domain which includes some irregular points. The method suggested in this study was used to determine the fuzzy control parameters by which the desired welding current were formed during inverter DC resistance spot welding. The output variable was the ITAE (integral of time multiplied by the absolute error). This output variable was determined according to the input variables, which are the GE, GDE, and GDU. This study described how to obtained near-optimal welding current condition over a wide search space conducting a relatively small number of experiments.

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

PLL Equivalent Augmented System Incorporated with State Feedback Designed by LQR

  • Wanchana, Somsak;Benjanarasuth, Taworn;Komine, Noriyuki;Ngamwiwit, Jongkol
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.161-169
    • /
    • 2007
  • The PLL equivalent augmented system incorporated with state feedback is proposed in this paper. The optimal value of filter time constant of loop filter in the phase-locked loop control system and the optimal state feedback gain designed by using linear quadratic regulator approach are derived. This approach allows the PLL control system to employ the large value of the phase-frequency gain $K_d$ and voltage control oscillator gain $K_o$. In designing, the structure of phase-locked loop control system will be rearranged to be a phase-locked loop equivalent augmented system by including the structure of loop filter into the process and by considering the voltage control oscillator as an additional integrator. The designed controller consisting of state feedback gain matrix K and integral gain $k_1$ is an optimal controller. The integral gain $k_1$ related to weighting matrices q and R will be an optimal value for assigning the filter time constant of loop filter. The experimental results in controlling the second-order lag pressure process using two types of loop filters show that the system response is fast without steady-state error, the output disturbance effect rejection is fast and the tracking to step changes is good.

Study on the Performance Improvement of Marine Engine Generator Exciter Control using Neural Network Controller (신경망 회로 제어기를 이용한 선박 엔진 발전기의 여자기 제어 성능 개선에 관한 연구)

  • HeeMoon Kim;JongSu Kim;SeongWan Kim;HyeonMin Jeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.659-665
    • /
    • 2023
  • The exciter of a ship generator adjusts the magnetic flux through excitation current control to maintain the output terminal voltage constant. The voltage controller inside the exciter typically uses a proportional integral control method. however, the response characteristics determined by the gain and time constant produce unwanted output owing to an inappropriate setting value that can reduce the quality and stability of power within the ship. In this study, a neural network circuit is learned using stable input/output data that can be obtained through the AC4A type exciter model provided by IEEE, and the simulation is performed by replacing the existing proportional integral control type voltage controller with the learned neural network circuit controller. Consequently, overshooting was improved by up to 9.63% compared with that of the previous model, and excellence in stable response characteristics was confirmed.

A study on the Array of Circular Loop Antenna in Moving Media (차동기질내에서 위형 루우프 안테나의 배열에 관한 연구)

  • 최병하
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.6
    • /
    • pp.33-37
    • /
    • 1974
  • In this paper, the radiation characteristics for the array of a circular loop antenna is studied in moving media. The medium is assumed to be homogeneous, isotropic, and to move with a constant velocity much less than the speed of light. The integral equation for the current distribution is derived and the current functions is found by means of courier Series as a solution of the integral equation. The electric field is derived from the current on circular loop antenna and the Dyadic Green's Function in moving media. The numerical calculation of the electric field concerning to the two element antenna array,, in which one element is parasitic, is carried out. The field patterns are plotted from the computed values. As a result, the field patterns in moving media, compared with the patterns in stationary media, are found to decrease in the direction of media velocity and increase in the opposite direction, and the maximum directivity is shifted.

  • PDF

Spectral Estimation of the Pass-by Noise of an Acoustic Source (등속 이동 음원의 통과소음 스펙트럼 추정에 관한 연구)

  • Lim Byoung-Duk;Kim Deok-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1597-1604
    • /
    • 2005
  • The identification of a moving noise source is important in reducing the source power of the transport systems such as airplanes or high speed trains. However, the direct measurement using a microphone running with noise source is usually difficult due to wind noise, white the source motion distorts the frequency characteristics of the pass-by sound measured at a fixed point. In this study the relationship between the spectra of the source and the pass-by sound signal is analyzed for an acoustic source moving at a constant velocity. Spectrum of the sound signal measured at a fixed point has an integral relationship with the source spectrum. Nevertheless direct conversion of the measured spectrum to the source spectrum is ill-posed due to the singularity of the integral kernel. Alternatively a differential equation approach is proposed, where the source characteristics can be recovered by solving a differential equation relating the source signal to the distorted measurement in time domain. The parameters such as the source speed and the time origin, required beforehand, are also determined only from the frequency-phase relationship using an auxiliary measurement. With the help of the regularization method, the source signal is successfully recovered. The effects of the parameter errors to the estimated frequency characteristics of the source are investigated through numerical simulations.

Linear Regression-Based Precision Enhancement of Summed Area Table (선형 회귀분석 기반 합산영역테이블 정밀도 향상 기법)

  • Jeong, Juhyeon;Lee, Sungkil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.809-814
    • /
    • 2013
  • Summed area table (SAT) is a data structure in which the sum of pixel values in an arbitrary rectangular area can be represented by the linear combination of four pixel values. Since SAT serially accumulates the pixel values from an image corner to the other corner, a high-resolution image can yield overflow in a floating-point representation. In this paper, we present a new SAT construction technique, which accumulates only the residuals from the linearly-regressed representation of an image and thereby significantly reduces the accumulation errors. Also, we propose a method to find the integral of the linear regression in constant time using double integral. We performed experiments on the image reconstruction, and the results showed that our approach more reduces the accumulation errors than the conventional fixed-offset SAT.

Preceptees' Experiences of Nursing Students in the Clinical Practice with Preceptorship: "Being refined while taking a firm stand with lack" (간호대학생의 임상실습에서 프리셉티 경험: "모자라지만 꿋꿋이 버텨 다듬어지기")

  • Park, Jeong Sook;Park, Young Suk
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.24 no.2
    • /
    • pp.168-180
    • /
    • 2018
  • Purpose: The purpose of this study was to explore preceptees' experience among nursing students in the Clinical Nursing Practice program as integral practice. Specific aims were to identify problems students face as preceptees at a clinical practice and how they interact with preceptors and others. Methods: Grounded theory methodology was utilized. Data were collected from interactive field notes and transcribed notes with individual in-depth interview from 12 senior nursing students who had experiences as a preceptee in the Clinical Nursing Practice. Results: Through constant comparative analysis, a core category emerged as "Being refined while taking a firm stand with lack." The process of "Being refined while taking a firm stand with lack" consisted of four phases: sailing phase, adaptation phase, achievement phase and wistful returning phase. Conclusion: The findings of the study indicate that there is a need for nursing students to understand the limitations and strengths to learning experiences in preceptorship. In addition, the Clinical Nursing Practice as an integral practice program is needed to improve nursing capacity and for proper adaptation to real clinical environment among graduating students.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.