• 제목/요약/키워드: integral boundary value problem

검색결과 66건 처리시간 0.026초

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.

POSITIVE SOLUTIONS OF SELF-ADJOINT BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS AT RESONANCE

  • Yang, Aijun;Ge, Weigao
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권4호
    • /
    • pp.407-414
    • /
    • 2008
  • In this paper, we study the self-adjoint second order boundary value problem with integral boundary conditions: (p(t)x'(t))'+f(t,x(t))=0, t $${\in}$$ (0,1), x'(0)=0, x(1) = $${\int}_0^1$$ x(s)g(s)ds. A new result on the existence of positive solutions is obtained. The interesting points are: the first, we employ a new tool-the recent Leggett-Williams norm-type theorem for coincidences; the second, the boundary value problem is involved in integral condition; the third, the solutions obtained are positive.

  • PDF

A novel technique for removing the rigid body motion in interior BVP of plane elasticity

  • Y. Z. Chen
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 2024
  • The aim of this paper is to remove the rigid body motion in the interior boundary value problem (BVP) of plane elasticity by solving the interior and exterior BVPs simultaneously. First, we formulate the interior and exterior BVPs simultaneously. The tractions applied on the contour in two problems are the same. After adding and subtracting the two boundary integral equations (BIEs), we will obtain a couple of BIEs. In the coupled BIEs, the properties of relevant integral operators are modified, and those integral operators are generally invertible. Finally, a unique solution for boundary displacement of interior region can be obtained.

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

A two dimensional mixed boundary-value problem in a viscoelastic medium

  • Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.407-427
    • /
    • 2009
  • A fundamental solution for the transient, quasi-static, plane problems of linear viscoelasticity is introduced for a specific material. An integral equation has been found for any problem as a result of dynamic reciprocal identity which is written between this fundamental solution and the problem to be solved. The formulation is valid for the first, second and mixed boundary-value problems. This integral equation has been solved by BEM and algorithm of the BEM solution is explained on a sample, mixed boundary-value problem. The forms of time-displacement curves coincide with literature while time-surface traction curves being quite different in the results. The formulation does not have any singularity. Generalized functions and the integrals of them are used in a different form.

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

A Boundary Element Method for Nonlinear Boundary Value Problems

  • Park, Yunbeom;Kim, P.S.
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.141-152
    • /
    • 1994
  • We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.

  • PDF

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

축대칭 경계적분법에 의한 항공기 가스터빈 로터디스크 구조해석에 관한 연구 (A Study on Structural Analysis for Aircraft Gas Turbine Rotor Disks Using the Axisymmetric Boundary Integral Equation Method)

  • 공창덕;정석주
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2524-2539
    • /
    • 1996
  • A design process and an axisymmetric boundary integral equation method for precise structural analysis of the aircraft gas turbine rotor disk were developed. This axisymmetric boundary integral equation method for stress and steady-state thermal analysis was improved in solution accuracy by appling an implicit technique for Cauchy principal value evaluation, a subelement technique for weak singular integral evaluation and a double exponentical integral technoque for internal point solution near boundary surfaces. Stresses, temperatures, low cycle fatigue lifes and critical speeds for the turbine rotor disk of the thrust 1421 N class turbojet engine were analysed in a pratical calculation model problem.

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF