• Title/Summary/Keyword: integer programming

Search Result 811, Processing Time 0.023 seconds

Dynamic Programming Approach for Prize Colleting Travelling Salesman Problem with Time Windows (시간제약이 있는 상금 획득 외판원 문제에 대한 동적 계획 접근 방법)

  • Tae, Hyun-Chul;Kim, Byung-In
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.112-118
    • /
    • 2011
  • This paper introduces one type of prize collecting travelling salesman problem with time windows (PCTSPTW), proposes a mixed integer programming model for the problem, and shows that the problem can be reduced to the elementary shortest path problem with time windows and capacity constraints (ESPPTC). Then, a new dynamic programming algorithm is proposed to solve ESPPTC quickly. Computational results show the effectiveness of the proposed algorithm.

A Dynamic Programming Approach to Feeder Arrangement Optimization for Multihead-Gantry Chip Mounter (동적계획법에 의한 멀티헤드 겐트리형 칩마운터의 피더배치 최적화)

  • 박태형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.514-523
    • /
    • 2002
  • Feeder arrangement is an important element of process planning for printed circuit board assembly systems. This paper newly proposes a feeder arrangement method for multihead-gantry chip mounters. The multihead-gantry chip mounters are very popular in printed circuit board assembly system, but the research has been mainly focused on single-head-gantry chip mounters. We present an integer programming formulation for optimization problem of multihead-gantry chip mounters, and propose a heuristic method to solve the large NP-complete problem in reasonable time. Dynamic programming method is then applied to feeder arrangement optimization to reduce the overall assembly time. Comparative simulation results are finally presented to verify the usefulness of the proposed method.

An Exact Algorithm for Two-Level Disassembly Scheduling (수준 분해 일정계획 문제에 대한 최적 알고리듬)

  • Kim, Hwa-Joong;Lee, Dong-Ho;Xirouchakis, Paul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.414-424
    • /
    • 2008
  • Disassembly scheduling is the problem of determining the quantity and timing of disassembling used or end-of-life products while satisfying the demand of their parts or components over a given planning horizon. This paper considers the two-level disassembly structure that describes a direct relationship between the used product and its parts or components. To formulate the problem mathematically, we first suggest an integer programming model, and then reformulate it to a dynamic programming model after characterizing properties of optimal solutions. Based on the dynamic programming model, we develop a polynomial exact algorithm and illustrate it with an example problem.

PCB 생산라인에서의 호이스트 스케쥴링을 위한 유전자알고리즘의 응용

  • 임준묵
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.29-62
    • /
    • 1996
  • In this paper, the problem of determining cyclic schedules for a material handling hoist in the printed-circuit-board(PCB) electroplating line is considered. The objective of this research is to determine an optimal simple-cycle schedule of the hoist which in turn maximizes the line throughput rate. Previous approaches to the cyclic hoist scheduling problem are all mathematical programming-based approaches to develop cyclic schedules(Mixed Integer Programming, Linear Programming based Branch and Bound, Branch and Bound Search Method and so on). In this paper, a genetic algorithm-based approach for a single hoist scheduling in the PCB electroplating line is described. Through some experiments for the well known example data and randomly generated data, the proposed algorithm is shown to be more efficient than the previous mathematical programming-based algorithm.

On Implementing a Hybrid Solver from Constraint Programming and Optimization (제약식프로그래밍과 최적화를 이용한 하이브리드 솔버의 구현)

  • Kim, Hak-Jin
    • Information Systems Review
    • /
    • v.5 no.2
    • /
    • pp.203-217
    • /
    • 2003
  • Constraint Programming and Optimization have developed in different fields to solve common problems in real world. In particular, constraint propagation and linear Programming are their own fundamental and complementary techniques with the potential for integration to benefit each other. This intersection has evoked the efforts to combine both for a solution method to combinatorial optimization problems. Attempts to combine them have mainly focused on incorporating either technique into the framework of the other with traditional models left intact. This paper argues that integrating both techniques into an old modeling fame loses advantages from another and the integration should be molded in a new framework to be able to exploit advantages from both. The paper propose a declarative modeling framework in which the structure of the constraints indicates how constraint programming and optimization solvers can interact to solve problems.

A Goal Programming Model for Guard Soldier Scheduling (목표계획법을 이용한 경계부대 근무편성에 관한 연구)

  • Kim, Hak-Young;Ryoo, Hong-Seo
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.2
    • /
    • pp.21-39
    • /
    • 2006
  • This paper presents a mixed linear and integer goal programming (GP) model to aid in strategic planning and scheduling of guard soldiers. The proposed model is a general-purpose model, hence can be used to produce an optimal schedule with respect to any user-provided combination of guard post objectives and soldier preferences. We extensively test the usefulness of the model on a real-life dataset from a guard post in the ROK Army with using three objectives set by the guard post and three preferences provided by individual solders. Numerical results and analysis from these experiments show that the proposed guard scheduling model efficiently as well as effectively generates an optimal guard schedule and can also be used for an optimal revision of any existing schedule. In summary, these illustrate that the proposed model can be practically used for optimal planning and scheduling of guard soldiers in guard posts.

A Linear Program Based Heuristic for the Bit and Subchannel Allocation in an OFDM System (OFDM 시스템의 비트 및 부채널 할당을 위한 선형계획법 기반 휴리스틱)

  • Moon, Woosik;Kim, Sunho;Park, Taehyung;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.67-75
    • /
    • 2013
  • The advantages of the orthogonal frequency division multiplexing (OFDM) are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. To further utilize vast channel capacity of the multiuser OFDM, one has to find the efficient adaptive subchannel and bit allocation among users. In this paper, we compare the performance of the linear programming dual of the 0-1 integer programming formulation with the existing convex optimization approach for the optimal subchannel and bit allocation problem of the multiuser OFDM. Utilizing tight lower bound provided by the LP dual formulation, we develop a primal heurisitc algorithm based on the LP dual solution. The performance of the primal heuristic is compared with MAO, ESA heuristic solutions, and integer programming solution on MATLAB simulation on a system employing M-ary quadrature amplitude modulation (MQAM) assuming a frequency-selective channel consisting of three independent Rayleigh multi-paths.

A Study on Berth Allocation for Navy Surface Vessels Considering Precedence Relationships among Services (서비스 전후 우선순위를 고려한 해군함정의 선석 할당에 관한 연구)

  • Jung, Whan-Sik;Kim, Jae-Hee;Kim, Sheung-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Navy surface vessels require pier services such as emergency repair, oil supply, arm loading / unloading, craning, standby readiness, normal repair, gun arrangement, ammunition loading, and food loading during the period in port. The purpose of this study is to establish efficient berth allocation plan for navy surface vessels in home port under the limited resources of piers and equipments. This study suggests Mixed Integer Programming model for berth allocation problem, considering precedence relationships among services. For an effective analysis, the model is implemented by ILOG OPL(Optimization Programming Language) Studio 3.1 and ILOG CPLEX 7.0. The results of the model show reduction of berth shifts and increasement of service benefits.

Development of Hedging Rule for Drought Management Policy Reflecting Risk Performance Criteria of Single Reservoir System (단일 저수지의 위험도 평가기준을 고려한 가뭄대비 Hedging Rule 개발)

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.501-510
    • /
    • 2002
  • During drought or impending drought period, the reservoir operation method is required to incorporate demand-management policy rule. The objective of this study is focused to the development of demand reduction rule by incorporating hedging-effect for a single reservoir system. To improve the performance measure of the objective function and constraints, we could incorporate three risk performance criteria proposed by Hashimoto et al. (1982) by mixed-integer programming and also incorporate successive linear programming to overcome nonlinear hedging term from the previous study(Shih et al., 1994). To verify this model, this hedging rule was applied to the Daechung multi-purpose dam. As a result, we could evaluate optimal hedging parameters and monthly trigger volumes.

A Study of Optimal Operation Policy using Risk Evaluation Criteria(II) (for the Han River Reservoirs System) (위험도 평가기준을 적용한 저수지 최적운영방안 연구(II) (한강수계 저수지군을 중심으로))

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.51-64
    • /
    • 2002
  • In this study, the formulation of the developed mixed-integer programming model for a multi-reservoir system including hydro-electric power generation (park et al., 2001) has been improved for multiple reservoir system operation using risk evaluation criteria. Sequential linear programming(SLP) was applied for the linearization of the hydro-electric energy term in the model. In order to allocate monthly reservoir release reasonably the value of weight for hydro-electric energy was assigned by level of power generation hour. The improved model was applied to the five reservoirs system in the Han river. And could be confirmed the availibility of new formulation appling risk evaluation criteria.