• 제목/요약/키워드: insulin signaling pathway

검색결과 114건 처리시간 0.025초

Klotho plays a critical role in clear cell renal cell carcinoma progression and clinical outcome

  • Kim, Ji-Hee;Hwang, Kyu-Hee;Lkhagvadorj, Sayamaa;Jung, Jae Hung;Chung, Hyun Chul;Park, Kyu-Sang;Kong, In Deok;Eom, Minseob;Cha, Seung-Kuy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.297-304
    • /
    • 2016
  • Klotho functions as a tumor suppressor predominantly expressed in renal tubular cells, the origin of clear cell renal cell carcinoma (ccRCC). Altered expression and/or activity of growth factor receptor have been implicated in ccRCC development. Although Klotho suppresses a tumor progression through growth factor receptor signaling including insulin-like growth factor-1 receptor (IGF-1R), the role of Klotho acting on IGF-1R in ccRCC and its clinical relevance remains obscure. Here, we show that Klotho is favorable prognostic factor for ccRCC and exerts tumor suppressive role for ccRCC through inhibiting IGF-1R signaling. Our data shows the following key findings. First, in tumor tissues, the level of Klotho and IGF-1R expression are low or high, respectively, compared to that of adjacent non-neoplastic parenchyma. Second, the Klotho expression is clearly low in higher grade of ccRCC and is closely associated with clinical outcomes in tumor progression. Third, Klotho suppresses IGF-1-stimulated cell proliferation and migration by inhibiting PI3K/Akt pathway. These results provide compelling evidence supporting that Klotho acting on IGF-1R signaling functions as tumor suppressor in ccRCC and suggest that Klotho is a potential carcinostatis substance for ccRCC.

Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways

  • Lee, Min Jung;Chang, Byung Joon;Oh, Seikwan;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.436-446
    • /
    • 2018
  • Background: The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods: We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results: Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein $(MBP)_{68-82}$ peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-${\gamma}$, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor ${\beta}1$, transforming growth factor ${\beta}$, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-${\kappa}B$ signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion: Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-${\kappa}B$ signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu;Liu, Daocheng;He, Sihao;Yang, Lei;Bao, Quanwei;Qin, Hao;Liu, Huayu;Zhao, Yufeng;Zong, Zhaowen
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.3.1-3.14
    • /
    • 2018
  • Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.

Induction of Apoptosis by IGFBP3 Overexpression in Hepatocellular Carcinoma Cells

  • Han, Jian-Jun;Xue, De-Wen;Han, Qiu-Rong;Liang, Xiao-Hong;Xie, Li;Li, Sheng;Wu, Hui-Yong;Song, Bao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10085-10089
    • /
    • 2015
  • Background: The insulin-like growth factor (IGF) system comprises a group of proteins that play key roles in regulating cell growth, differentiation, and apoptosis in a variety of cellular systems. The aim of this study was to investigate the role of insulin-like growth factor binding protein 3 (IGFBP3) in hepatocellular carcinoma. Materials and Methods: Expression of IGF2, IGFBP3, and PTEN was analyzed by qRT-PCR. Lentivirus vectors were used to overexpress IGFBP3 in hepatocellular carcinoma cell (HCC) lines. The effect of IGFBP3 on proliferation was investigated by MTT and colony formation assays. Results: Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells. Conclusions: Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells.

Oral administration of Grifola frondosa affect lipid metabolism and insulin signaling pathway on BKS. Cg-+Leprdb/+Leprdb/OlaHsd mouse

  • Yun, Seong-Bo;Kim, Dae-Young
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.203-211
    • /
    • 2021
  • Diabetic mellitus (DM) is a carbohydrate metabolic disorder that involves high blood sugar because insulin works abnormally. Type 2 diabetes accounts for most of them. However, diabetes treatments such as GLP-1 and DPP-4 inhibitors commonly caused side effects including gastrointestinal disorders. Grifola frondosa (G. frondosa) revealed various pharmacological effects in recent studies. It has a variety of anti-cancer polysaccharides through host-mediated mechanisms. D-fraction in G. frondosa has apoptotic effects, promoting myeloid cell proliferation and differentiation into granulocytes-macrophages. It has also been shown to reduce the survival rate of breast cancer cells. Though, no further study has been conducted on the specific effects of G. frondosa in the db/db mouse. Therefore, we would like to research the blood glucose improving effect of G. frondosa, a natural material, in type 2 diabetes model mouse, in this study. G. frondosa was administered to the disease model mouse (BKS.Cg-+Leprdb/+Leprdb/OlaHsd) for 8 weeks to monitor weight and blood glucose changes every week. And we evaluated anti-diabetes effects by checking biomarker changes shown through blood. Experiment did not show statistically significant weight differences, but control groups showed significantly higher weight gain than G. frondosa administered groups. We collected blood from the tail veins of the db/db mouse each week. As a result, the lowest blood sugar level was shown in the 500 mg/kg group of G. frondosa. Glucose in the blood was examined with HBA1c, and 7.8% was shown in the 500 mg/kg administration group, lower than in other groups. These results suggest the potential improvements of diabetes in G. frondosa.

Determination of Total Chiro-inositol Content in Selected Natural Materials and Evaluation of the Antihyperglycemic Effect of Pinitol Isolated from Soybean and Carob

  • Kim, Jung-In;Kim, Jae-Cherl;Joo, Hee-Jeong;Jung, Suk-Hee;Kim, Jong-Jin
    • Food Science and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.441-445
    • /
    • 2005
  • Pinitol and chiro-inositol exert insulin-like effect by mediating post-receptor signaling pathway. Total chiro-inositol concentrations, including pinitol, chiro-inositol, and their derivatives, were determined in 115 natural and food materials to identify economical sources for mass production of pinitol. Carob pod, Bougainvillea, soy whey, and soybean oligosaccharides were rich sources of chiro-inositol. Pinitol was isolated from soy whey and carob pod, considered as economically viable sources, by chromatographic separation using activated carbon. Soy and carob pinitols had same chemical structure as that of reference pinitol based on HPLC and NMR results. Oral administration of soy pinitol and carob pinitol (10 mg/kg) significantly decreased blood glucose at 2-6 hr in streptozotocin-induced diabetic rats. These results suggest pinitol isolated from soy whey and carob pod could be beneficial in controlling blood glucose in animal model of diabetes mellitus.

Metformin Down-regulates Endometrial Carcinoma Cell Secretion of IGF-1 and Expression of IGF-1R

  • Zhang, Yu;Li, Meng-Xiong;Wang, Huan;Zeng, Zheng;Li, Xiao-Mao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.221-225
    • /
    • 2015
  • As metformin can inhibit endometrial carcinoma (EC) cell growth and the insulin growth factor (IGF) system is active in EC, the question of whether it can regulate endometrial carcinoma cell secretion of IGF-1 or expression of IGF-1 receptor (IGF-1R) is of interest. In this study, serum IGF-1 levels in EC patients were found to be comparable with that in the non EC patients (p>0.05). However, the IGF-1 level in the medium of cultured cells after treatment with metformin was decreased (p<0.05). IGF-1R was highly expressed in human endometrial carcinoma paraffin sections, but IGF-1R and phosphor-protein kinase B/protein kinase B (p-Akt/Akt) expression was down-regulated after metformin treatment (p<0.05). In summary, metformin can reduce the secretion of IGF-1 by Ishikawa and JEC EC cell lines and their expression of IGF-1R to deactivate downstream signaling involving the PI-3K/Akt pathway to inhibit endometrial carcinoma cell growth.

The Anti-Diabetic Pinitol Improves Damaged Fibroblasts

  • Ji-Yong Jung;Joong Hyun Shim;Su Hae Cho;Il-Hong Bae;Seung Ha Yang;Jinsick Kim;Hye Won Lim;Dong Wook Shin
    • Biomolecules & Therapeutics
    • /
    • 제32권2호
    • /
    • pp.224-230
    • /
    • 2024
  • Pinitol (3-O-Methyl-D-chiro-inositol) has been reported to possess insulin-like effects and is known as one of the anti-diabetic agents to improve muscle, liver, and endothelial cells. However, the beneficial effects of pinitol on the skin are not well known. Here, we investigated whether pinitol had effects on human dermal fibroblasts (HDFs), and human dermal equivalents (HDEs) irradiated with ultraviolet A (UVA), which causes various damages including photodamage in the skin. We observed that pinitol enhanced wound healing in UVA-damaged HDFs. We also found that pinitol significantly antagonized the UVA-induced up-regulation of matrix metalloproteinase 1 (MMP1), and the UVA-induced down-regulation of collagen type I and tissue inhibitor of metalloproteinases 1 (TIMP1) in HDEs. Electron microscopy analysis also revealed that pinitol remarkably increased the number of collagen fibrils with regular banding patterns in the dermis of UVA-irradiated human skin equivalents. Pinitol significantly reversed the UVA-induced phosphorylation levels of ERK and JNK but not p38, suggesting that this regulation may be the mechanism underlying the pinitol-mediated effects on UVA-irradiated HDEs. We also observed that pinitol specifically increased Smad3 phosphorylation, which is representative of the TGF-β signaling pathway for collagen synthesis. These data suggest that pinitol exerts several beneficial effects on UVA-induced damaged skin and can be used as a therapeutic agent to improve skin-related diseases.

Weighted Gene Co-expression Network Analysis in Identification of Endometrial Cancer Prognosis Markers

  • Zhu, Xiao-Lu;Ai, Zhi-Hong;Wang, Juan;Xu, Yan-Li;Teng, Yin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4607-4611
    • /
    • 2012
  • Objective: Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. Methods: The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. Results: Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. Conclusions: These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.