• Title/Summary/Keyword: insulin signaling pathway

Search Result 114, Processing Time 0.455 seconds

Pear pomace ethanol extract improves insulin resistance through enhancement of insulin signaling pathway without lipid accumulation

  • You, Mi-Kyoung;Kim, Hwa-Jin;Rhyu, Jin;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.198-205
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: The anti-diabetic activity of pear through inhibition of ${\alpha}-glucosidase$ has been demonstrated. However, little has been reported about the effect of pear on insulin signaling pathway in obesity. The aims of this study are to establish pear pomace 50% ethanol extract (PPE)-induced improvement of insulin sensitivity and characterize its action mechanism in 3T3-L1 cells and high-fat diet (HFD)-fed C57BL/6 mice. MATERIALS/METHODS: Lipid accumulation, monocyte chemoattractant protein-1 (MCP-1) secretion and glucose uptake were measure in 3T3-L1 cells. Mice were fed HFD (60% kcal from fat) and orally ingested PPE once daily for 8 weeks and body weight, homeostasis model assessment of insulin resistance (HOMA-IR), and serum lipids were measured. The expression of proteins involved in insulin signaling pathway was evaluated by western blot assay in 3T3-L1 cells and adipose tissue of mice. RESULTS: In 3T3-L1 cells, without affecting cell viability and lipid accumulation, PPE inhibited MCP-1 secretion, improved glucose uptake, and increased protein expression of phosphorylated insulin receptor substrate 1 [p-IRS-1, ($Tyr^{632})$)], p-Akt, and glucose transporter type 4 (GLUT4). Additionally, in HFD-fed mice, PPE reduced body weight, HOMA-IR, and serum lipids including triglyceride and LDL-cholesterol. Furthermore, in adipose tissue, PPE up-regulated GLUT4 expression and expression ratio of p-IRS-1 ($Tyr^{632})/IRS$, whereas, down-regulated p-IRS-1 ($Ser^{307})/IRS$. CONCLUSIONS: Our results collectively show that PPE improves glucose uptake in 3T3-L1 cells and insulin sensitivity in mice fed a HFD through stimulation of the insulin signaling pathway. Furthermore, PPE-induced improvement of insulin sensitivity was not accompanied with lipid accumulation.

Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향 (Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell)

  • 신은지;김지은;;박용만;윤성균;장병철;이삼빈;김병천
    • 생명과학회지
    • /
    • 제26권3호
    • /
    • pp.325-330
    • /
    • 2016
  • 본 연구에서는 선행 연구에서 항당뇨 효능이 확인된 Ceriporia lacerata 균사체 배양물 건조물(CL01)을 3T3-L1 세포에 인슐린과 병용 혹은 단독 처리하여 CL01이 세포 단계에서 인슐린 신호 전달에 미치는 영향을 분석하였다. 분화된 3T3-L1 세포에서 포도당 흡수 정도를 측정한 결과, 인슐린과 CL01을 병용 처리한 군에서 농도 의존적으로 유의적으로 포도당 흡수 정도가 증가하였고, 인슐린 부재 상태에서 CL01을 처리하였을 때는 포도당 흡수 작용이 거의 일어나지 않았음을 확인하였다. 또한 분화된 세포에서 인슐린 신호 전달 관련 단백질 및 mRNA 발현을 측정한 결과, IRβ, Akt, PI3K, AMPK 단백질의 인산화가 진행되었고, GLUT4 mRNA 발현이 증가하였음을 알 수 있었다. 이들 결과를 통해 CL01이 당 대사 및 인슐린 신호 전달에 관여하는 유관 단백질 및 유전자 발현에 영향을 미치며 이에 따라 세포 내로 포도당 흡수를 증가시키는 것을 확인하였다.

Is Acetylation a Metabolic Rheostat that Regulates Skeletal Muscle Insulin Action?

  • LaBarge, Samuel;Migdal, Christopher;Schenk, Simon
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.297-303
    • /
    • 2015
  • Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.

지방세포분화에서 Hibiscus 추출물에 의한 Insulin signaling 억제효과 (Hibiscus Sabdariffa L. Inhibits the Insulin Signaling in Adipogenesis)

  • 김진경;송정훈
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.86-92
    • /
    • 2007
  • Hibiscus sabdariffa L., a tropical beverage material, is used commonly as in folk medicine against hypertension, pyrexia, inflammation, liver disorders, and obesity. However, the mechanism by which Hibiscus sabdariffa L. modulates adipogenic differentiation is remained to be elusive. This report was designed to investigate the inhibitory effect of Hibiscus extract on insulin signaling pathway during adipocyte differentiation in 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were differentiated with isobutylmethylxanthine, dexamethasone, and insulin (MDI) and followed by the addition of Hibiscus extract. Treatment with Hibiscus resulted in a decrease of lipid droplet accumulation, which was suppressed by PI-3 kinase inhibitor wortmannin in 3T3-L1 preadipocytes. Also, Hibiscus extract markedly attenuated the mRNA expression of adipogenic transcriptional factor PPAR${\gamma}$ and adipogenic hormon Leptin during adipogenesis. However, it did not affect the expression of adiponectin in 3T3-L1 preadipocytes differentiated with MDI mixture. Furthermore, Adipogenic differentiation by MDI mixture increased the phosphorylation and expression of PI3-Kinase and Akt in 3T3 preadipocytes, which was markedly suppressed by Hibiscus extract treatment. Taken together, our results suggest that Hibiscus extract suppressed the adipogenic differentiation of 3T3 preadipocytes through activation of PI3-Kinase and Akt signaling pathway.

Changes in expression of insulin signaling pathway genes by dietary fat source in growing-finishing pigs

  • Kim, Seung-Chang;Jang, Hong-Chul;Lee, Sung-Dae;Jung, Hyun-Jung;Park, Jun-Cheol;Lee, Seung-Hwan;Kim, Tae-Hun;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • 제56권4호
    • /
    • pp.12.1-12.7
    • /
    • 2014
  • This study investigated changes in gene expression by dietary fat source, i.e., beef tallow, soybean oil, olive oil, and coconut oil (each 3% in feed), in both male and female growing-finishing pigs. Real-time PCR was conducted on seven genes (insulin receptor; INSR, insulin receptor substrate; IRS, phosphatidylinositol (3,4,5)-triphosphate; PIP3, 3-phosphoinositide-dependent protein kinase-1; PDK1, protein kinase B; Akt, forkhead box protein O1; FOXO1 and cGMP-inhibited 3', 5'-cyclic phosphodiesterase; PDE3) located upstream of the insulin signaling pathway in the longissimus dorsi muscle (LM) of pigs. The INSR, IRS, PIP3, and PDE3 genes showed significantly differential expression in barrow pigs. Expression of the PIP3 and FOXO1 genes was significantly different among the four dietary groups in gilt pigs. In particular, the PIP3 gene showed the opposite expression pattern between barrow and gilt pigs. These results show that dietary fat source affected patterns of gene expression according to animal gender. Further, the results indicate that the type of dietary fat affects insulin signaling-related gene expression in the LM of pigs. These results can be applied to livestock production by promoting the use of discriminatory feed supplies.

Effect of Insulin-like Growth Factor-1 on Bone Morphogenetic Protein-2 Expression in Hepatic Carcinoma SMMC7721 Cells through the p38 MAPK Signaling Pathway

  • Xu, Guan-Jun;Cai, Sheng;Wu, Jian-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1183-1186
    • /
    • 2012
  • Objective: To observe the effect of insulin-like growth factor-1 (IGF-1) on bone morphogenetic protein (BMP)-2 expression in hepatocellular carcinoma SMMC7721 cells. Methods: Cells were divided into blank control, IGF-1, IGF-1 + SB203580, and SB203580 groups. SB203580 was used to block the p38 MAPK signaling pathway. Changes in the expression of BMP-2, p38 MAPK, and phosphorylated p38, MERK, ERK and JNK were determined using reverse transcription polymerase chain reactions (RT-PCR) and Western blot analysis. Results: Protein expression of phosphorylated BMP-2, MERK, ERK, and JNK was significantly up-regulated by IGF-1 compared with the control group ($1.138{\pm}0.065$ vs. $0.606{\pm}0.013$, $0.292{\pm}0.005$ vs. $0.150{\pm}0.081$, $0.378{\pm}0.006$ vs. $0.606{\pm}0.013$, and $0.299{\pm}0.015$ vs. $0.196{\pm}0.017$, respectively; P<0.05). Levels of BMP-2 and phosphorylated MERK and JNK were significantly reduced after blocking of the p38MAPK signaling pathway ($0.494{\pm}0.052$ vs. $0.165{\pm}0.017$, $0.073{\pm}0.07$ vs. $0.150{\pm}0.081$, and $0.018{\pm}0.008$ vs. $0.196{\pm}0.017$, respectively; P<0.05), but such a significant difference was not observed for phosphorylated ERK protein expression ($0.173{\pm}0.07$ vs. $0.150{\pm}0.081$, P>0.05). Conclusion: IGF-1 can up-regulate BMP-2 expression, and p38 MAPK signaling pathway blockage can noticeably reduce the up-regulated expression. We can conclude that the up-regulatory effect of IGF-1 on BMP-2 expression is realized through the p38 MAPK signaling pathway.

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

한우 등심조직 내 인슐린 조절 유전자의 발현이 도체중에 미치는 영향에 관한 연구 (Association of Insulin-related Genes Expression with Carcass Weight in Loin Muscle of Korean Cattle (Hanwoo))

  • 임다정;조용민;채한화;이승환;최봉환;김남국
    • 생명과학회지
    • /
    • 제25권1호
    • /
    • pp.8-15
    • /
    • 2015
  • PPAR signaling pathway는 지방대사와 지방세포 분화를 조절하는 대표적인 대사회로이기 때문에 가축에 있어서 주로 육질과의 연관성 연구가 진행되었다. 하지만, 최근 들어 육량(체중)과 관련이 있다는 연구결과가 보고되고 있다. 본 논문에서는 PPAR signaling pathway에 존재하는 48개 유전자 중에서, pathway 분석을 통하여 체중에 가장 영향을 주는 인슐린 대사 호르몬에 의해 조절 받는 16개 유전자를 선별하여 거세 한우 20두에서 유전자 발현을 조사하였다. 유전자 발현과 도체중과의 관련성 분석을 위하여 회귀분석을 수행하였으며, 3개 유전자(ACSL6, FADS2, ILK)가 통계적으로 유의한 결과(p<0.05)를 보였다. 마지막으로, pathway 분석을 통하여 한우의 도체중과 관련이 있는 3개 유전자를 공통적으로 조절하는 포도당(D-glucose)이 존재함을 확인하였다.

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Anti-diabetic effects of benfotiamine on an animal model of type 2 diabetes mellitus

  • Chung, Kang Min;Kang, Wonyoung;Kim, Dong Geon;Hong, Hyun Ju;Lee, Youngjae;Han, Chang-Hoon
    • 대한수의학회지
    • /
    • 제54권1호
    • /
    • pp.21-26
    • /
    • 2014
  • Although benfotiamine has various beneficial anti-diabetic effects, the detailed mechanisms underlying the impact of this compound on the insulin signaling pathway are still unclear. In the present study, we evaluated the effects of benfotiamine on the hepatic insulin signaling pathway in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are a type 2 diabetes mellitus model. OLETF rats treated with benfotiamine showed decreased body weight gain and reduced adipose tissue weight. In addition, blood glucose levels were lower in OLETF rats treated with benfotiamine. Following treatment with benfotiamine, the levels of Akt phosphorylation (S473/T308) in the OLETF groups increased significantly compared to the OLETF control group so that they were almost identical to the levels observed in the control group. Moreover, benfotiamine restored the phosphorylation levels of both glycogen synthase kinase (GSK)-$3{\alpha}/{\beta}$ (S21, S9) and glycogen synthase (GS; S641) in OLETF rats to nearly the same levels observed in the control group. Overall, these results suggest that benfotiamine can potentially attenuate type 2 diabetes mellitus in OLETF rats by restoring insulin sensitivity through upregulation of Akt phosphorylation and activation of two downstream signaling molecules, GSK-$3{\alpha}/{\beta}$ and GS, thereby reducing blood glucose levels through glycogen synthesis.