• 제목/요약/키워드: insulin receptor signaling

검색결과 94건 처리시간 0.027초

고과당식이 랫드모델에서 적하수오 투여에 의한 대사증후군 개선효과 (Beneficial effect of Polygoni Multiflori Radix in high fructose diet-induced metabolic syndrome rat model)

  • 고민철;이윤정;윤정주;이호섭;강대길
    • 대한본초학회지
    • /
    • 제30권2호
    • /
    • pp.11-18
    • /
    • 2015
  • Objectives : Polygoni Multiflori Radix (Jeokhasuo in Korean) is a Oriental traditional herbs widely used in East Asian countries. Overconsumption of fructose results in hypertension, dyslipidemia, obesity and impaired glucose tolerance which have documented as a risk of cardiovascular diseases. This experimental study was designed to investigate the beneficial effects of an ethanol extract from Polygoni Multiflori Radix (PMR) in high-fructose (HF) diet-induced metabolic syndrome rat model. Methods : Sprague-Dawley (SD) rats were divided into three groups; Control group, receiving regular diet and tap water, HF group, and HF + PMR group both receiving supplemented with 65% fructose (n=10), respectively. The HF + PMR group initially received HF diet with PMR (100 mg/kg/day) for 8 weeks. Results : PMR significantly prevented the metabolic disturbances such as hyperlipidemia, hypertension and impaired glucose tolerance. Chronic treatment with PMR significantly decreased body weight, fat weight and adipocyte size, suggesting a role of anti-obesity effect. PMR led to improve the hyperlipidemia through the increase in HDL cholesterol level as well as the decrease in triglyceride and LDL cholesterol level. In addition, PMR suppressed adhesion molecules and endothelin-1 (ET-1) expression in aorta resulting in the decrease of hypertension. In muscle tissue, PMR significantly recovered the HF-induced insulin resistance through increase of insulin receptor substrate-1 (IRS-1), p-$AMPK{\alpha}1/2$, and p-Akt expression. PMR improved HF-induced metabolic disorders and its action was caused by energy metabolism-mediated insulin signaling activation. Conclusions : These results demonstrate that PMR may be a beneficial therapeutic for metabolic syndrome through the improvement of hyperlipidemia, obesity, insulin resistance and hypertension.

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.

Insulin receptor substrate 2: a bridge between Hippo and AKT pathways

  • Jeong, Sun-Hye;Lim, Dae-Sik
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.209-210
    • /
    • 2018
  • NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZ-mediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer.

사료의 어분함량대체가 넙치(Paralichthys olivaceus)의 간과 근육 내 인슐린유사성장인자의 발현과 체성장에 미치는 영향 (Effect of Fish Meal Replacement on Insulin-like Growth Factor-I Expression in the Liver and Muscle and Implications for the Growth of Olive Flounder Paralichthys olivaceus)

  • 박수진;문지성;서진송;남택정;이경준;임상구;김강웅;이봉주;허상우;최윤희
    • 한국수산과학회지
    • /
    • 제52권2호
    • /
    • pp.141-148
    • /
    • 2019
  • This study examined the effect of insulin-like growth factor (IGF)-I expression in the liver and muscle on the growth of Paralichthys olivaceus fed diets low in fish meal. A feeding experiment was conducted at Jeju National University, Jeju Island, Korea. Groups of P. olivaceus (total initial weight: 200 g) were maintained for 20 weeks on one of five experimental diets containing different proportions of fish meal. Diets containing 0%, 20%, 30%, 40%, and 50% fish meal were labeled FM0, FM20, FM30, FM40, and FM50, respectively. Fish growth was observed every 4 weeks during the feeding experiment, and plasma and liver and muscle tissues were sampled. Plasma IGF-I levels were analyzed using an ELISA kit. The mechanism of IGF-I receptor signaling was examined using immunoblotting and reverse transcription-polymerase chain reaction. The greatest total weight increase was observed in the FM30 group. In parallel, plasma levels of IGF-I and IGF-binding protein were highest in the FM30 group, and mRNA and protein expression were also significantly higher in this group. The first step in the IGF-I signaling pathway, tyrosine-phosphorylation checking, occurred smoothly until 20 weeks. These results suggest that a dietary ratio of 30% fish meal best promotes growth in this species. The IGF-I signaling pathway in the liver and muscle is associated with growth in P. olivaceus.

Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells

  • Lee, Jun Hee;Lee, Sang Hun;Lee, Hyang Seon;Ji, Seung Taek;Jung, Seok Yun;Kim, Jae Ho;Bae, Sun Sik;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.459-466
    • /
    • 2016
  • Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than $Lnk^{-/-}$ MSCs. An ex vivo adipogenic differentiation assay showed that $Lnk^{-/-}$ MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R-Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) and its adipogenic target genes (LPL and FABP4) significantly decreased in $Lnk^{-/-}$ MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the $IGF-1/Akt/PPAR-{\gamma}$ pathway.

Growth Regulation in IGF-1 Receptor Transgenic Mice

  • Kim Hyun-Joo;Shin Young-Min;Chang Suk-Min;Park Chang-Sik;Jin Dong-Il
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.93-97
    • /
    • 2006
  • To study the signaling effect of insulin-like growth factor-I(IGF-1), transgenic mice containing IGF-1 Receptor (IGF-1R) cDNA fused to metallothionein promoter were produced by DNA microinjection into the pronucleus of mouse zygote. Three founders were produced with transgenic mice containing IGF-1R gene. Transgenic mice lines contained approximately $4{\sim}20$ copies of transgenes per cell and transmission of this gene into the progeny with Mendelian manner were determined. The founder mice were mated with normal mice to produce $F_1$ mice and then $F_2$ mice. Transmission rates of IGF-1R transgene in the progeny mice were $25{\sim}60%$ in $F_1$ generation and $40{\sim}50%$ in $F_2$ generation. The mRNA expression of IGF-1R transgene in liver was analyzed using RT-PCR for IGF-1R gene in liver. When body weights of transgenic pups were measured during 4, 10 and 14 weeks after birth, IGF-1R transgenic mice grew faster than non transgenic littermates. This study indicated that growth regulation by IGF-1 signaling through IGF-1R can be elucidated using IGF-1R transgenic mice.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Palmitate처리된 인간 간세포주 HepG2 세포에서 piperine의 지질 축적과 인슐린 저항성 기전에 대한 연구 (Effects of Piperine on Insulin Resistance and Lipid Accumulation in Palmitate-treated HepG2 Cells)

  • 정희진;방은진;정성호;김병무;정해영
    • 생명과학회지
    • /
    • 제29권9호
    • /
    • pp.964-971
    • /
    • 2019
  • 간의 지질 축적과 인슐린 저항성은 비알콜성 지방간 환자에게서 증가한다. Piperine은 후추(Piper nigrum)와 필발(인도산 후추, P. longum)의 주요 성분으로 항암, 항비만, 항 당뇨병, 항염증 및 항산화 등의 생리활성이 보고되었다. 그러나 piperine의 인간 간세포 HepG2 세포에서 지질 축적과 인슐린 저항성의 억제제로서의 연구는 보고된 바가 없다. 본 연구의 목적은 지질 축적 및 인슐린 저항성에 대한 piperine의 효과를 palmitate처리된 HepG2 세포에서 잠재적인 분자 기전을 밝히는 것이다. 그 결과 piperine처리군은 지질 함량을 감소시켰고, 지방 형성 표적 유전자인 SREBP-1c와 FAS의 발현을 억제함으로써 palmitate처리된 세포내 지질 축적을 감소시켰다. 게다가 piperine처리군은 지방산 산화에 관련된 CPT-1과 인산화된 ACC 및 인산화된 IRS-1 (Tyr632)와 Akt의 레벨을 증가시켰다. 또한, piperine처리군은 인산화된 IRS-1 (Ser307)의 레벨을 감소시켰다. 결론적으로 palmitate처리된 HepG2 세포에서 piperine은 SREBP-1와 FAS발현의 감소 및 CPT-1과 ACC 인산화의 증가 및 인산화된 IRS-1(Try632)와 Akt 신호전달 경로를 조절함으로써 지질 축적 및 인슐린 저항성을 개선함을 확인하였다. 따라서 piperine의 지질 축적 및 인슐린 저항성을 예방하는 약물로써 가능성이 제시되었다.

OLETF 당뇨모델동물을 이용한 맥문동 추출물(LP9M80-H)의 당뇨질환에 대한 효능 (LP9M80-H Isolated from Liriope platyphylla Could Help Alleviate Diabetic Symptoms via the Regulation of Glucose and Lipid Concentration)

  • 김지은;황인식;구준서;남소희;최선일;이혜련;이영주;김윤한;박세진;김남수;최영환;황대연
    • 생명과학회지
    • /
    • 제22권5호
    • /
    • pp.634-641
    • /
    • 2012
  • LP9M80-H는 맥문동($Liriope$ $platyphylla$)으로부터 메탄올과 헥산을 이용하여 추출한 새로운 추출물로서 ICR 마우스에서 인슐린분비를 촉진하며, 간과 뇌 조직에서 인슐린 신호경로를 활성화시키는 것으로 알려져 있다. 본 연구에서는 LP9M80-H가 당뇨와 비만의 치료에 미치는 효과를 조사하기 위하여, OLETF 모델동물에 LP9M80-H를 2주간 투여한 후 당뇨와 비만과 관련된 주요인자의 변화를 관찰하였다. 비록 체중은 두 집단간에 차이가 없었으나 복부 지방량은 vehicle 투여군보다 LP9M80-H 투여군에서 적었다. 또한, 혈중 포도당농도는 LP9M80-H를 투여한 OLETF 랫드가 대조군에 비하여 약간 낮았으나 인슐린의 농도는 유의적으로 크게 증가하였다. 혈청 내 3가지 주요 지질의 농도는 LP9M80-H를 투여한 OLETF 랫드에서 유의적으로 감소하였고, 지방의 산화를 촉진하는 아디포넥틴의 농도도 LP9M80-H를 투여한 OLETF 랫드에서 감소하였다. 더불어, 체내에 분비된 인슐린이 표적장기에 미치는 영향을 관찰하기 위하여 간조직에서 인슐린 수용체와 인슐린 수용체기질(iRS)의 발현을 관찰하였으며, 이러한 2가지 단백질은 LP9M80-H를 투여한 OLETF 랫드에서 vehicle 투여군에 비해 유의미하게 감소하였다. 또한, 인슐린 신호 경로의 다운스트림에 위치하는 포도당 수송체 중에서 Glut-2와 Glut-3 발현은 LP9M80-H를 투여한 OLETF 랫드에서 유의미하게 감소하는 반면에, Glut-4 발현은 일정하게 유지되었다. 따라서 이러한 결과는 LP9M80-H는 포도당 항상성과 지질농도의 조절을 통하여 당뇨와 비만의 증상을 완화시키는데 기여할 것으로 사료된다.