• Title/Summary/Keyword: instrumentation: ccd camera

Search Result 24, Processing Time 0.023 seconds

DEVELOPMENT OF CCD CAMERA FOR OBSERVING WIDE FIELDS (천체의 광역 관측을 위한 CCD 카메라 개발)

  • YU YOUNG SAM;PAK SOOJONG;KIM MINJIN;LEE SUNGHO;BYUN YONG-IK;CHUN MOO-YOUNG;HAN WONYONG
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • We developed a CCD camera that can observe wide fields on the sky. We tested the field of views using various lenses. For cooling the CCD chip, we used a thermoelectric cooling device and tested the cooling efficiency. This camera will continuously observe a part of the sky. The data from the camera will be used to decide the current weather condition by the real-time star counting program (SCount) which will be developed later.

  • PDF

Hardware Implementation of an Image Tracking System Using CCD Camera (CCD 카메라를 이용한 이미지 트랙킹 시스템의 하드웨어 구현)

  • Yun, Ji-Nyeong;Lee, Ja-Sung;Koh, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.353-355
    • /
    • 1994
  • This work describes a hardware implementation of a precision image tracking system which employs a CCD camera mounted on pan/tilt device. Unknown translation between two successive images of a moving object is estimated by using a generalized least-squares method. Estimated position error obtained by the tracking algorithm is used to drive DC motors built in the pan/tilt device for the camera to follow the image. An experimental result shows a sub-resolution tracking error for a image moving with a uniform velocity.

  • PDF

CHARACTERISTICS AND PERFORMANCE OF A FAST CCD CAMERA: DALSTA IM30P

  • SEO YOUNG-MIN;PARK KI-WOONG;CHAE JONGCRUL
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.185-191
    • /
    • 2004
  • We have been developing a solar observing system based on a fast CCD camera 1M30P made by the DALSA company. Here we examine and present the characteristics and performance of the camera. For this we have analyzed a number of images of a flat wall illuminated by a constant light source. As a result we found that in the default operating mode 1) the mean bias level is 49 ADU/pix, 2) the mean dark current is about 8 ADU /s/pix, 3) the readout noise is 1.3 ADU, and 4) the gain is about 42 electrons/ ADU. The CCD detector is found to have a linearity with a deviation smaller than $6\%$, and a uniform sensitivity better than $1\%$. These parameters will be used as basic inputs in the analysis of data to be taken by the camera.

CHARACTERISTICS OF THE BOAO 2K CCD CAMERA (보현산천문대 2K CCD 카메라의 특성)

  • PARK BYEONG-GON;CHUN MOO-YOUNG;YUK IN-SOO;SEONG HYEON-CHEOL
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • We present the characteristics of the 2K CCD camera at the Bohyunsan Optical Astronomy Observatory of the Korea Astronomy Observatory at the time of its development. The purpose of this paper is to support the observers who may need detailed information on the characteristics of the camera and to provide helpful information on the optimization' of a CCD camera for those who try to develop their own camera. The 2K CCD camera was optimized to have a gain of $1.8e^-/ADU$ and a read out noise of $7e^-$ from an experiment using radioactive $^{55}Fe$ X-ray source. The charge transfer efficiency was measured as 0.9999976 for serial and 0.9999942 for parallel direction, which means $0.5\%$ charge loss along the serial direction and $1.2\%$ along the parallel direction across the chip. The quantum efficiency of the camera was measured from an experiment using a homogeneous light source consisting of a halogen lamp and an integrating sphere with a monochromator. The resulting quantum efficiency of the camera peaked at the wavelength range 600-700 nm with the value of $\~0.89$.

  • PDF

AN OBSERVATION PROGRAM FOR THE SOAO 2K CCD CAMERA (소백산천문대 2K CCD 카메라용 관측 프로그램 개발)

  • KIM SEUNG-LEE;KYEONG JAE-MANN;KWON SUN-GIL;YOUN JAE-HYOUK
    • Publications of The Korean Astronomical Society
    • /
    • v.16 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • We developed an observation program for a 2K CCD camera, which was newly attached at the SOAO (Sobaeksan Optical Astronomy Observatory) 61cm telescope. The program was designed to control the telescope as well as the CCD camera and to monitor the CCD image quality, with very easy under the window-based graphical user interface (GUI). Furthermore, applying the automated differential photometric algorithm, we can obtain the instrumental magnitudes of several variable and comparison stars in real-time. Simultaneous photometry enables us to get precise differential magnitudes of variable stars even if the weather condition is not photometric. This new observation system has been using for many astronomical observations from September, 2001.

  • PDF

LABORATORY TEST OF CCD #1 IN BOAO (보현산 천문대 1번 CCD카메라의 실험실 테스트)

  • Park, Byeong-Gon;Cheon, Mu-Yeong;Kim, Seung-Ri
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.67-78
    • /
    • 1995
  • An introduction to the first CCD camera system in Bohyunsan Optica1 Astronomy Observatory(CCD#l) is presented. The CCD camera adopts modular dewar design of IfA(Institute for Astronomy at Hawaii University) and SDSU(San Diego State University) general purpose CCD controller. The user interface is based on IfA design of easy-to-use QUI program running on the NeXT workstation. The characteristics of the CCD#l including Gain, Charge Transfer Efficiency, rms Read-Out Noise, Linearity and Dynamic range is tested and discussed. The CCD#l shows 6.4 electrons RON and gain of 3.49 electrons per ADU, and the optimization resulted in about 27 seconds readout time guaranteeing charge transfer efficiency of 0.99999 for both direction. Linearity test shows that non-linear coefficient is $6{\times}10^{-7}$ in the range of 0 to 30,000 ADU.

  • PDF

DISCRETE TIME DYNAMIC MODEL FOR TELESCOPE AUTO-GUIDING SYSTEM (망원경의 자동추적장치를 위한 이산시간 동적모델 분석)

  • Lee, Joon-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.431-450
    • /
    • 2007
  • In the auto-guiding system for obtaining a long exposure astrophotography, CCD camera is usually used for measuring guide errors which are affected by optical dispersion and mechanical disturbances. In this paper, a discrete time dynamic model and a performance index are proposed for analysing the auto-guiding system. The optimal gain for proportional control is derived considering the optical dispersion and the disturbances. Some experiments are provided to illustrate that the optimal control gain is lower as the optical dispersion is higher.

SEOUL NATIONAL UNIVERSITY CAMERA II (SNUCAM-II): THE NEW SED CAMERA FOR THE LEE SANG GAK TELESCOPE (LSGT)

  • Choi, Changsu;Im, Myungshin
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • We present the characteristics and the performance of the new CCD camera system, SNUCAM-II (Seoul National University CAMera system II) that was installed on the Lee Sang Gak Telescope (LSGT) at the Siding Spring Observatory in 2016. SNUCAM-II consists of a deep depletion chip covering a wide wavelength from $0.3{\mu}m$ to $1.1{\mu}m$ with high sensitivity (QE at > 80% over 0.4 to $0.9{\mu}m$). It is equipped with the SDSS ugriz filters and 13 medium band width (50 nm) filters, enabling us to study spectral energy distributions (SEDs) of diverse objects from extragalactic sources to solar system objects. On LSGT, SNUCAM-II offers $15.7{\times}15.7$ arcmin field-of-view (FOV) at a pixel scale of 0.92 arcsec and a limiting magnitude of g = 19.91 AB mag and z=18.20 AB mag at $5{\sigma}$ with 180 sec exposure time for point source detection.

Visual Servoing of Robot Manipulators using the Neural Network with Optimal structure (최적구조의 신경회로망을 이용한 로붓 매니퓰레이터의 비주얼 서보잉)

  • Kim, Dae-Joon;Lee, Dong-Wook;Chun, Hyo-Byong;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1269-1271
    • /
    • 1996
  • This paper presents a visual servoing combined by evolutionary algorithms and neural network for a robotic manipulators to control position and orientation of the end-effector. Using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we generate the control input to agree the target image, to realize the visual servoing. The validity and effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

AUTO-GUIDING SYSTEM FOR CQUEAN (CAMERA FOR QUASARS IN EARLY UNIVERSE)

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kuehne, John;Kim, Dong-Han;Kim, Han-Geun;Odoms, Peter S.;Chang, Seung-Hyuk;Im, Myung-Shin;Pak, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.115-123
    • /
    • 2011
  • To perform imaging observations of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse (CQUEAN), which is sensitive at 0.7-1.1 ${\mu}m$. To enable observations with long exposures, we develop an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we design a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 arcmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirm that a stable image can be obtained with an exposure time as long as 1200 seconds.