• Title/Summary/Keyword: insolation

Search Result 386, Processing Time 0.026 seconds

Application Strategies of Photovoltaic Energy in Ulsan (울산지역의 태양광에너지의 활용방안)

  • Lee, Kwan-Ho;Sim, Kwang-Yeal
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.320-323
    • /
    • 2009
  • Weather data is an important variable for the estimation value of the program for evaluating energy performance. The difference in data value of major weather elements used in weather data (temperature, insolation amount) were compared and analyzed. It was found that temperature showed similar values but insolation amount took different values. Especially in Ulsan, since the Meteorological Association does not measure insolation amount. To optimize the incident solar radiation, the solar azimuth angles are needed for solar photovoltaic systems. Test results shows that the $60^{\circ}$installation angel higher efficient than the $30^{\circ}$ installation angel in winter.

  • PDF

Comparison study of PV tracking system with sensor and program method (센서방식 및 프로그램 방식에 의한 태양광 발전 추적시스템의 비교 연구)

  • Jang, Mi-Geum;Ko, Jae-Sub;Choi, Jung-Sik;Back, Jung-Woo;Kang, Sung-Jun;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.222-224
    • /
    • 2009
  • This paper proposes analysis data of generation efficiency with tracking method for solar tracking. Tracking algorithm of PV generation is divided the sensor method and program method. Generation efficiency is analyzed the three cases 1-high insolation, 2-low insolation, 3-rapidly changing insolation. Proposed data is possible to apply for development of novel algorithm with hybrid tracking method in this paper. Hereby, This paper is proved the benefit of analyzed data.

  • PDF

A MPPT Control of Photovoltaic System for Current ripple reduce (전류리플 저감을 위한 태양광발전시스템의 최대출력점추적제어)

  • Chung, Choon-Byeong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.496-499
    • /
    • 2006
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuate on the variations of insolation, temperature and loads. To obtain maximum power from solar cell, photovoltaic system cell power system usually requires maximum power point tracking controller. This paper propose Maximum power point tracking method using zero slope of differential value of maximum power. The power compare method traces to maximum power point rapidly but oscillate on the maximum power point largely, when quantity insolation variation is big. The power compare method is traces to maximum power point slowly but oscillate maximum point on the maximum power point smally, when quantity insolation variation is small. To solve two problem of the power compare method, designed zero slope of differential value of maximum power.

  • PDF

Development of a novel tracking for efficiency improvement of PV system with sensor method (센서방식 태양광 발전시스템의 효율개선을 위한 새로운 추적알고리즘 개발)

  • Jang, Mi-Geum;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Back, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.424-427
    • /
    • 2009
  • This paper reposes a novel tracking algerian for efficiency improvement of photovoltaic(PV) system using sensor method PV system of sensor method is exactly impossible to track a sun position when insolation is low or rapidly changed by the clouds and fogs. Also, in this case, tracking device is occurred energy consumption by unnecessary operating. This statement of reason, real power of PV system is not increased than fixed PV system in specified location. Therefore, this paper proposes a novel ticking algorithm considered insolation for efficiency improvement of PV system using sensor method And this paper analyzes the generation volume and proves the validity of proposed algorithm as compared with the conventional PV tracking system using sensor method.

  • PDF

Development of a Novel Tracking for Efficiency Improvement of PV System with Sensor Method (센서방식 태양광 발전시스템의 효율개선을 위한 새로운 추적알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2192-2199
    • /
    • 2009
  • This paper proposes a novel tracking algorithm for efficiency improvement of photovoltaic(PV) system using sensor method. PV system of sensor method is exactly impossible to track a sun position when insolation is low or rapidly changed by the clouds and fogs. Also, in this case, tracking device is occurred energy consumption by unnecessary operating. This statement of reason, real power of PV system is not increased than fixed PV system in specified location. Therefore, this paper proposes a novel tracking algorithm considered insolation for efficiency improvement of PV system using sensor method. And this paper analyzes the generation volume and proves the validity of proposed algorithm as compared with the conventional PV tracking system using sensor method.

A Study of MPPT algorithm for Low-insolation (저일사강도에서 MPPT를 동작시키기 위한 알고리즘 연구)

  • Kim, Ki-Hyun;Yu, Gwon-Jong;Jung, Young-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.473-475
    • /
    • 2001
  • This paper proposed a MPPT ( Maximum Power Point Tracking) control algorithm for PV(Photovoltaic) array based on a modified constant voltage control MPPT algorithm at low-insolation. This method which combines a IncCond(Incremental Conductance) and a constant voltage control algorithm. In contrast to the typical conventional MPPT algorithm, the proposed method have been obtained high efficiency and good performance. The proposed algorithm is verified through simulation result. In order to confirm the availability of the scheme, a simulation used PSIM and ACSL software tool.

  • PDF

The Sensitivity Analysis according to Observed Frequency of Daily Composite Insolation based on COMS (관측 빈도에 따른 COMS 기반의 일 평균 일사량 산출의 민감도 분석)

  • Kim, Honghee;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sung, Noh-Hun;Lee, Darae;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.733-739
    • /
    • 2016
  • Insolation is an major indicator variable that can serve as an energy source in earth system. It is important to monitor insolation content using remote sensing to evaluate the potential of solar energy. In this study, we performed sensitivity analysis of observed frequency on daily composite insolation over the Korean peninsula. We estimated INS through the channel data of Communication, Ocean and Meteorological Satellite (COMS) and Cloud Mask which have temporal resolution of 1 and 3 hours. We performed Hemispherical Integration by spatial resolution for meaning whole sky. And we performed daily composite insolation. And then we compared the accuracy of estimated COMS insolation data with pyranometer data from 37 points. As a result, there was no great sensitivity in the daily composite INS by observed frequency of satellite that accuracy of the calculated insolation at 1 hour interval was $28.6401W/m^2$ and 3 hours interval was $30.4960W/m^2$. However, there was a great difference in the space distribution of two other INS data by observed frequency of clouds. So, we performed sensitivity analysis with observed frequency of clouds and distinction between the two other INS data. Consequently, there was showed sensitivity up to $19.4392W/m^2$.

Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year (평판형 태양열 집열기의 연중 열적 성능의 모델링 해석)

  • Kim, Gew Deok;Park, Bae Duck;Kim, Kyoung Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

A Detailed Analysis of Solar Radiation Resources in Korea (국내 태양에너지 자원 정밀분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is $3.56kWh/m^2/day$.

  • PDF

Prediction and Accuracy Analysis of Photovoltaic Module Temperature based on Predictive Models in Summer (예측모델에 따른 태양광발전시스템의 하절기 모듈온도 예측 및 정확도 분석)

  • Lee, Yea-Ji;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Climate change and environmental pollution are becoming serious due to the use of fossil energy. For this reason, renewable energy systems are increasing, especially photovoltaic systems being more popular. The photovoltaic system has characteristics that are affected by ambient weather conditions such as insolation, outside temperature, wind speed. Particularly, it has been confirmed that the performance of the photovoltaic system decreases as the module temperature increases. In order to grasp the influence of the module temperature in advance, several researchers have proposed the prediction models on the module temperature. In this paper, we predicted the module temperature using the aforementioned prediction model on the basis of the weather conditions in Incheon, South Korea during July and August. The influence of weather conditions (i.e. insolation, outside temperature, and wind speed) on the accuracy of the prediction models was also evaluated using the standard statistical metrics such as RMSE, MAD, and MAPE. The results show that the prediction accuracy is reduced by 3.9 times and 1.9 times as the insolation and outside temperature increased respectively. On the other hand, the accuracy increased by 6.3 times as the wind speed increased.