• 제목/요약/키워드: inside train

검색결과 189건 처리시간 0.026초

전산유체역학을 이용한 고속철도차량 객실 내 압력변동 평가 (Assessment of the Pressure Transient Inside the Passenger Cabin of High-speed Train Using Computational Fluid Dynamics)

  • 권혁빈;남성원;곽종현
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.65-71
    • /
    • 2009
  • 축대칭 Navier-Stokes 방정식에 기반한 전산유체역학을 이용하여 고속철도차량 객실 내 압력변동을 평가하였다. 차량 내부의 압력변동은 차내 압력변화율과 차 내외부 압력변동의 선형 관계식에 근거한 1차 차분식을 이용하여 계산되었다. 전산해석 결과, 새로운 한국형 고속철도 차량이 경부고속선 터널을 330km/h로 통과할 시 발생하는 객실 실내압 변동은 해당 차량이 기밀도 국내기준을 만족한다고 가정하였을 시 철도차량의 실내압력변동 국내 기준치를 잘 만족하는 것으로 나타났다.

터널을 통과하는 열차의 객실 내 압력 변동 해석 (NUMERICAL SIMULATION OF PRESSURE CHANGE INSIDE CABIN OF A TRAIN PASSING THROUGH A TUNNEL)

  • 권혁빈;윤수환;남성원
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.23-28
    • /
    • 2012
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

터널을 통과하는 열차의 객실 내 압력 변동 해석 (Numerical Simulation of Pressure Change inside Cabin of a Train Passing through a Tunnel)

  • 권혁빈;윤수환;남성원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.337-342
    • /
    • 2011
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

  • PDF

고속전철의 기밀 거동 해석 (Analysis of the air tightness for high speed train)

  • 정병철;염경안;강석택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.220-224
    • /
    • 2002
  • As the train run through the tunnels, especially at high speed, pressure shock developed by the running train gives the influence on the pressure fluctuation inside the tunnel and consequently, inside the car. This pressure changes and pressure gradient is closely related with the tunnel section, train speed, air tightness of the train, length of the tunnel, etc. This study includes the analysis of the pressure behavior at the varied train speed and tunnel length. The results show that train speed affects the pressure gradient inside the car almost linearly, and that there exist the critical tunnel lengths that gives the maximum value of pressure change and pressure gradient, respectively.

  • PDF

고속 철도 차량 내.외부 자계분포 해석 (Magnetic Field Analysis Inside and Outside Express Railway Train)

  • 민석원;명성호;김응식;한인수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.430-432
    • /
    • 1999
  • In this paper, magnetic field inside and outside express railway train is analysed by use of finite element method. We find that high permeability material reduces magnetic field inside train more than thick material. We also know windows in train does not have influence on magnetic field at seat in train.

  • PDF

지하공간의 공기 질 개선을 위한 지하철 터널 내 열차풍의 수치 해석적 연구 (A NUMERICAL ANALYSIS OF TRAIN-WIND IN THE SUBWAY TUNNEL FOR THE IMPROVEMENT OF THE OF UNDERGROUND SPACE AIR QUALITY)

  • 이준호;쥬레바 막슈다;정상현;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.523-528
    • /
    • 2011
  • Subway becomes more and more main transportation in major cities. Air pollution in the subway platforms is decreased; however, dust flow inside subway tunnel and train is increased by installing Platform Screen Door. Airflow inside subway tunnel is observed using computational method in this study The airflow characteristics around ventilation shafts and inside the tunnel is studied following the train movement, while the train moves from existing Miasamgeori station to Gireum station ANSYS CFX V12.0.l and ICEM CFD V12.0.l are used to compute the airflow inside the subway tunnel.

  • PDF

고속열차의 차간 공간에 의해 발생하는 실내소음 특성 분석 (Noise generated from the inter-coach spacing of a high-speed train)

  • 최성훈;박준홍;박찬경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1449-1452
    • /
    • 2006
  • When fluid at high speed flows over an open cavity, large acoustic pressure fields inside the cavity are produced by fluid/structure interactions at the downstream end of the cavity. The inter-coach spacing is one of the most important sources of the aero-acoustic noise of a high-speed train. This noise can usually be heard as low frequency structure-borne noise inside the train. In this study experiments were performed in order to investigate the effects of mud-flap length on the aeroacoustic noise generation inside high-speed trains. Results of the measurement confirmed that the characteristics of the noise generated from the inter-coach spacing are strongly dependent on the size of the gap. Also investigated are the characteristics of the turbulent flow after the inter-coach spacing and consequent generation of the aeroacoustic noise inside the cabin.

  • PDF

고속철도차량의 유리창 압력에 관한 연구 (A Study on the Window Glass Pressure for High-speed Train)

  • 권혁빈;장대성
    • 한국철도학회논문집
    • /
    • 제13권4호
    • /
    • pp.371-375
    • /
    • 2010
  • 분산형 고속철도차량의 유리창 강도조건을 설정하기 위하여 열차가 터널을 통과하는 동안의 압력변동이 수치적으로 모사되었다. 계산결과를 토대로 객실 내외의 압력차이가 계산되었고, 객실 유리창에 작용하는 하중의 크기가 도출되었다. 열차가 터널을 통과하는 동안의 압력장을 모사하기 위하여 축대칭 Navier-Stokes 방정식에 기반한 전산유체역학이 이용되었다. 차량 내부의 압력변동은 차내 압력변화율과 차 내외부 압력변동의 선형 관계식에 근거한 1차 차분식을 이용하여 계산되었다.

고속전철의 압력파 영향에 대한 차체 기밀설계 (The Design of Vehicle for Air tightness to Pressure wave of High Speed Train)

  • 박광복;김현철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.83-94
    • /
    • 1999
  • This study is about design of vehicle for air tightness to pressure waves of high speed train. When the train runs to high speed over 300km/h, the comfort of passenger come down due to difference pressure between inside and outside of passenger room. The car-body was carried out the design of air-tightness, and the analysis of inside pressure of vehicle in tunnel by TG_TUN of ALSTOM Co. The result of analysis should be used the design of air pressurized system and car-body of G7 high speed train project.

  • PDF

서울 일부 지하철 객차와 승강장에서 측정한 $PM_{10}$$PM_{2.5}$농도의 특성 (Characterization of $PM_{10}$ and $PM_{2.5}$ Levels inside Train and in Platform of Subway)

  • 박동욱;윤경섭;박수택;하권철
    • 한국환경보건학회지
    • /
    • 제31권1호
    • /
    • pp.39-46
    • /
    • 2005
  • This study was performed to investigate the concentration of $PM_{10}$ and $PM_{2.5}$ in inside train and platform of subway 1, 2, 4 and 5 in Seoul, KOREA. $PM_{10}$, $PM_{2.5}$, temperature, humidity and carbon dioxide were monitored using Portable Aerosol Spectrometer at afternoon (between 13:00 and 16:00). The concentrations of $PM_{10}$ and $PM_{2.5}$ in inside train were monitored to be higher than those measured in platform. In addition, $PM_{10}$ concentration in both platform and inside train were found to be greatly higher than range of from 35 ${\mu}g/m^3$ to 81${\mu}g/m^3$ in ambient air reported by Ministry of Environment. This study found that there were many inside train in subway 1, 2, 4 line where exceeded 150 ${\mu}g/m^3$ of Korean PM10 standard. The average percentage that exceeded PM10 standard was 83.3% in line 1, 37.9% in line 2 and 63.1% in line 4, respectively. In particular, most of inside train in subway line 1 were over PM10 limit. PM2.5 concentration ranged from 77.7 ${\mu}g/m^3$ to 158.2 ${\mu}g/m^3$, which were found to be greatly higher than ambient air PM2.5 standard promulgated by United States Environmental Protection Agency (US-EPA) (24 hours arithmatic mean : 65 ${\mu}g/m^3$, year average : 15 ${\mu}g/m^3$). The percentage of $PM_{2.5}$ in $PM_{10}$ was 86.2% in platform, 81.7% in inside train, 80.2% in underground and 90.2% in ground. These results indicated that fine particles ($PM_{2.5}$) accounted for most of $PM_{10}$.