• Title/Summary/Keyword: inserted steel plates

Search Result 14, Processing Time 0.028 seconds

Evaluation of the Strength Properties of Glulam Connections with Inserted Steel Plates and Drift Pins

  • Kim, Ho-Ki;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.29-38
    • /
    • 2008
  • It is well-known that the strength properties of wood connections depend on the density of the wood members, the diameter of the fasteners, the number of fasteners, and the arrangement of the fasteners, etc. In this study, the connection with inserted steel plates and drift pins was made in different configurations. The specimens were Larch and Sugi glulam connections. The specimens were loaded in tension, and the yield loads of the connections were obtained. The values obtained from the tests were compared with the predicted values. Good agreement between the yield loads obtained from the tension failure tests and the predicted yield loads were shown. It was shown that the density of the wood member barely affected the strength properties of the connections. The strength decreases of the Sugi glulam connections by the group effect were less than those of the Larch glulam connections.

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Performance Evaluation of Welded Joints for Single-Layer Latticed Domes through Joint Rigidity Test (단층 래티스 돔에 적용 가능한 용접 접합부의 휨실험을 통한 성능 평가)

  • Lee, Young Hak;Seo, Sang Hoon;Kim, Min Sook;Kim, Hee Cheul;Lee, Sung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.601-608
    • /
    • 2008
  • Joints of single-layer latticed domes show various flexural behaviors according to their shapes and connecting methods. Ball joints are relatively easy to apply and build while their rigidities are relatively small and have disadvantage in long span. Welded joints have many advantages in rigidity, internal force and long span. However few experimental studies have been performed. In this paper, improved welded joint for the single layer latticed domes was proposed through both analytical and experimental analyses. Length of inserted plates, thickness of inserted plates and hole of sub steel pipes were selected as parameters for experimental comparisons and defining the effects of the selected variables.

A Study of Developing the Low Noise Circular Saw Blade (저소음 목재용 회전톱날의 개발에 관한 연구)

  • 강석춘
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.147-155
    • /
    • 2000
  • To reduce the noise from wood cutting saw at the saw mill(lumber mill) or a construction area, some multi-layer sandwich saw blades which a aluminum or copper plate was inserted between the two steel plates were developed and were tested of the wood cutting noise level at various test places. From the research, it was found that the multi-layer saw blade with copper or aluminum plate between steel plates and spot welded 60 points could reduce the wood cutting sound level about 8.3 dB(97.031 dB - 88.743 dB) at indoor test and 3.8 dB(84.805 - 81.638 dB) at field test.

  • PDF

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

An Experimental Study on Flexural Performance of Precast Concrete Modular Beam Systems (프리캐스트 콘크리트 모듈러 보 시스템의 휨 성능에 대한 실험적 연구)

  • Ro, Kyong Min;Cho, Chang Geun;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Precast concrete (PC) modules have been increased its use in modular buildings due to their better seismic performance than steel modules. The main issue of the PC module is to ensure structural performance with appropriate connection methods. This study proposed a PC modular beam system for simple construction and improved structural and splicing performance. This modular system consisted of modules with steel plates inserted, and it is easy to construct by bolted connection. The steel plates play the role of tensile rebar and stirrup, which has the advantage of structural performance. The structural performance of the proposed PC modular beam system was evaluated by flexural test on one reinforced concrete (RC) beam specimen consisting of a monolithic, and two PC specimens with the proposed PC modular beam system. The results demonstrated that the proposed PC modular beam system achieved approximately 86% of the structural performance compared to the RC monolithic specimen, with similar ductility of approximately 1.06 fold greater.

Characteristics of Drawing and Concurrent Spot Welding of Overlapped Aluminum Plates with Copper Electrodes Inserted in Heated Dies (가열된 금형에 삽입된 구리전극에 의한 중첩된 알루미늄 합금판재의 드로잉성형 동시 점용접 특성)

  • Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.174-180
    • /
    • 2017
  • In this study, a new spot welding with electric resistance heated dies is suggested for the spot welding of non-ferrous metal plates for drawing and concurrent spot welding. This welding method involves two heating processes such as heating by conduction of electric resistance heated dies and heating by resistance between contacted surfaces of two plates by welding current induced to copper dies for the fusion of contacted metal. This welding process has welding variables such as current induced in heated and copper dies, the inner diameters of heated dies, and edge shape of the copper dies. Experimental conditions for each current should be established to get successful welding strength. The welding strength could reach to the desired value in industrial fields under the following conditions of contact diameters of heated dies in this case of overlapped aluminum5052 plates with 0.3-mm thickness: inner and outer diameters of 5.0 and 16mm, respectively; diameter of copper dies, 5.0mm; heating current, 6.8kA in heated steel dies; welding current, 8.6 kA in copper dies.

Study on the Improvement of Strength Capacity for Glulam-to-bolt Connection (집성재 볼트 결합부의 강도 성능 개선에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.31-37
    • /
    • 2005
  • This research investigated the increase in strength capacity for the difference of various connection conditions. Connections were constructed with a main member, glulam and side members, 3 mm steel plates. Connections were varied in the number of inserted 1 mm steel plate. The strength capacity considerably increased by inserting the very thin steel plate within structural glulam connection. Glulam connections were classified as the number of inserted steel plate, group A was none, group B was one, group C was two, and group D was three. Ultimate and design values of the group B were 18% and 13% greater than the group A, the group C were 27% and 20% than the group A, and the group D were 33% and 24% than the group A. However, the increase in strength capacity and the additional difficulty should be considered on economic and technical view.

Composite action in connection regions of concrete-filled steel tube columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.47-64
    • /
    • 2003
  • In a nonlinear finite element study on the mechanical behavior of simple beam connections to continuous concrete-filled steel tube columns, two principally different connection types were analyzed: one with plates attached to the outside of the tube wall, relying on shear transfer, and one with an extended plate inserted through the steel section to ensure bearing on the concrete core. The load was applied partly at the connection within the column length and partly at the top, representing the load from upper stories of a multistory building. The primary focus was on the increased demand for load transfer to ensure composite action when concrete with higher compressive strength is used. The results obtained from the analyses showed that the design bond strength derived from push tests is very conservative, mainly due to the high frictional shear resistance offered by pinching and contraction effects caused by connection rotation. However, with higher concrete strength the demand for load transfer increases, and is hard to fulfill for higher loads when connections are attached only to the steel section. Instead, the connection should penetrate into the concrete core to distribute load to the concrete by direct bearing.