• Title/Summary/Keyword: insecticide

Search Result 683, Processing Time 0.031 seconds

Avoidance Behavior of Honey bee, Apis mellifera from Commonly used Fungicides, Acaricides and Insecticides in Apple Orchards

  • Kang, Moonsu;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.32 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Avoidance behavior is an important life history strategy to survive hazardous environment. The experiment was conducted to detect the avoidance tendency of the honeybee Apis mellifera against commonly used pesticides in apple production. Choice test given only 50% sucrose solution and pesticide-mixed sucrose solution as food estimated the avoidance in laboratory. Most of the acaricides and fungicides tested were shown avoided. Among insecticides, honeybee showed strong avoidance to cyhexatine, carbosulfan and fenpyroximate but low to diflubenzuron, tebufenpyrad, and acrinathrin. Avoidance behavior to neonicotinoid insecticides showed bifurcated; highly avoided from thiacloprid, acetamiprid while less avoided from imidacloprid, thiamethoxam and dinotefuran. From the field study, abamectin, fenthion, amitraz and acequinocyl showed highly avoided while fungicide of fenarimol, acaricides of acrinathrin and phosphamidon, IGR insecticide of diflubenzuron, neonicotinoid insecticide of imidacloprid, and carbamate insecticide of carbaryl showed less avoidance in the field. These results partly explained high bee poisoning from carbaryl in apple flowering period, and neonicotinoids during season.

Management of the Development of Insecticide Resistance by Sensible Use of Insecticide, Operational Methods (실행방식 측면에서 살충제의 신중한 사용에 의한 저항성 발달의 관리)

  • Chung, Bu-Keun;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.123-158
    • /
    • 2009
  • An attempt was made to stimulate future research by providing exemplary information, which would integrate published knowledge to solve specific pest problem caused by resistance. This review was directed to find a way for delaying resistance development with consideration of chemical(s) nature, of mixture, rotation, or mosaics, and of insecticide(s) compatible with the biological agents in integrated pest management (IPM). The application frequency, related to the resistance development, was influenced by insecticide activity from potentiation, residual period, and the vulnerability to resistance development of chemical, with secondary pest. Chemical affected feeding, locomotion, flight, mating, and predator avoidance. Insecticides with negative cross-resistance by the difference of target sites and mode of action would be adapted to mixture, rotation and mosaic. Mixtures for delaying resistance depend on each component killing very high percentage of the insects, considering allele dominance, cross-resistance, and immigration and fitness disadvantage. Potential disadvantages associated with mixtures include disruption of biological control, resistance in secondary pests, selecting very resistant population, and extending cross-resistance range. The rotation would use insecticides in high and low doses, or with different metabolic mechanisms. Mosaic apply insecticides to the different sectors of a grid for highly mobile insects, spray unrelated insecticides to sedentary aphids in different areas, or mix plots of insecticide-treated and untreated rows. On the evolution of pest resistance, selectivity and resistance of parasitoids and predator decreased the number of generations in which pesticide treatment is required and they could be complementary to refuges from pesticides To enhance the viability of parasitoids, the terms on the insecticides selectivity and factors affecting to the selectivity in field were examined. For establishment of resistant parasitoid, migration, survivorship, refuge, alternative pesticides were considered. To use parasitoids under the pressure of pesticides, resistant or tolerant parasitoids were tested, collected, and/or selected. A parasitoid parasitized more successfully in the susceptible host than the resistant. Factors affecting to selective toxicity of predator are mixing mineral oil, application method, insecticide contaminated prey, trait of individual insecticide, sub-lethal doses, and the developmental stage of predators. To improve the predator/prey ratio in field, application time, method, and formulation of pesticide, reducing dose rate, using mulches and weeds, multicropping and managing of surroundings are suggested. Plant resistance, predator activity, selective insect growth regulator, and alternative prey positively contributed to the increase of the ratio. Using selective insecticides or insecticide resistant predator controlled its phytophagous prey mites, kept them below an economic level, increased yield, and reduced the spray number and fruits damaged.

Diagnostic Device Model for Insecticide susceptibilities of Beet Armyworm, Spodoptera exigua(Hubner) (파밤나방(Spodoptera exigua (Hiibner)) 살충제 감수성 진단장치모형)

  • 김용균;이준익;강성영;한상찬
    • Korean journal of applied entomology
    • /
    • v.38 no.1
    • /
    • pp.53-57
    • /
    • 1999
  • Simple diagnostic kits for monitoring insecticide susceptibility of beet armyworm, Spodoptera exigua (Hiibner) were developed and applied to the field populations. The operation of the kits was based on the correlations between enzyme activities of esterase (EST) and acetylcholinesterase (AChE) and the insecticide susceptibilities. Four different kinds of diagnostic kits (ED, EM, AD, and AM) were designed and classified by diagnostic enzymes (E for esterases and A for acetylcholinesterase) and inhibitors (D for dichlorvos and M for monocrotophos). Diagnostic inhibitor concentrations were 1 mM for ED, 10 mM for EM, 100 mM for AD, and 100 mM for AM. Resistant larvae which were not inhibited by the diagnostic amounts of insecticides developed positive staining (red color), but susceptible~ s howed negative (no color). An insect was used for both EST and AChE diagnostic kits, but different in their samples: hemolymph for EST and the head for AChE. These four diagnostic kits were applied to 1 1 different populations which showed variations of insecticide susceptibilities. Four kits were different in the capability discriminating the insecticide susceptibilites according to insecticides: ED to bifenthrin, AD to methomyl, and ED and AM to chlorpyrifos-methyl. These diagnostic devices can be used for insecticide-resistance management program for this insect pest. It also provide a technical guide to insect pest management for farmers, directors, and researchers.

  • PDF

Insecticide Resistance Monitoring of Bemisia tabaci (Hemiptera: Aleyrodidae) in Korea (전국 담배가루이 약제 저항성 조사)

  • Kim, Sanghyeon;Kim, Sung Jin;Cho, Susie;Lee, Si Hyeock
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.167-173
    • /
    • 2021
  • Sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an insect pest with sucking mouth part and globally attacks diverse crops and vegetables. Since first reported in 1998, it is now widely spread in many regions in Korea. Due to insecticide resistance, it is necessary for optimal control of the whiteflies to select effective insecticides with precise insecticide resistance monitoring. In this study, B. tabaci individuals were collected from 12 regions in 7 provinces of Korea from June to September in 2020. Using these field populations, insecticide resistance levels were monitored using a residual contact bioassay along with molecular markers. Bioassay results revealed that B. tabaci possessed high levels of resistance to five insecticides exhibiting different modes of action: dinotefuran, spinosad, emamectin benzoate, chlorfenapyr, and bifenthrin. In addition, quantitative sequencing in target sites of organophosphate and pyrethroid insecticides revealed that point mutations reached to saturated or near-saturated levels across the country. This suggests that insecticide resistance management is required for effective control of B. tabaci populations in Korea.

Fetal growth retardation induced by flupyrazofos, a new organophosphorus insecticide, in rats.

  • Chung, Moon-Koo;Kim, Jong-Choon;Han, Sang-Seop
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.122-122
    • /
    • 2001
  • Flupyrazofos is a new type of pyrazole organophosporus insecticide, which has a high activity against the diamond-back moth (Plutella xylostella). The potential of this agent to induce developmental toxicity was investigated in the Sprague-Dawley rat.(omitted)

  • PDF

The Insecticide Constituents of Several Celastraceae Plants

  • Wang, MingAn;Wu, WenJun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 2002
  • The insecticide constituents of several Celastraceae family plants including Celastrus angulatus, Celastrus orbiculatus, Celastrus flagellaris, Euonymus verrucosides, Euonymus forunei and Euonymus phellomana were studied by bioassay-guided fractionation. All structures of sesquiterpene polyol esters and alkaloids have been elucidated by UV, IR, MS, NMR and x-ray diffraction evidences. These compounds exhibited insecticidal, antifeedant and narcotic activities against Mythimna separata.

Organophosphorus Insecticide Residues in Fruits and Vegetables (과실 및 채소중 유기인계 잔류 농약에 관한 연구)

  • 최영진;김세원;고영수
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.2
    • /
    • pp.181-186
    • /
    • 1986
  • Organophosphorus insecticide residues were investigated in six kinds of fruits and five kinds of vegetables.The materials used in this experiment were grape, musk melon, apple, peach, plum, apricot, lettuce, green pepper, cucumber, pumpkin and tomato which were collected from June to september 1986 in Seoul. Residual pesticides investigated were Diazinon, Parathion, MEP (Fenitrothion), Malathion, EPN, MPP (Fenthion), PAP (Phenthoate) and Dimethoate and all samples were analysed by gas chromatographic technique with NPD (Nitrogen Phosphorus Detector). No sample was found to approach proposed national maximum residue limits in Korea.

  • PDF

Use of Sprinkler System for Control of Peach Pyralid Moth, Dichocrocis punctiferalis on Chestnut Orchard (살수장치(撒水裝置)를 이용(利用)한 복숭아명나방 방제(防除)에 관(關)한 연구(硏究))

  • Chung, Sang-Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.277-280
    • /
    • 2005
  • In order to prevent chestnuts from damage by the peach pyralid moth, Dichocrosis punctiferalis, a sprinkler system was installed on the chestnut orchard. Such a test was conducted at Yeoju-gun, Gyeonggi-do, Korea in 2002. Insecticides of fenitrothion 50% EC, x1,000 and diflubenzuron 25% Wp, x2,500 were sprayed at ten-day fifteen-day and twenty-day intervals during the period of D. punctiferalis adult occurrence by sprinkler system. The peach pyralid moths generally emerged for about 60 days from early July to early September, and peak emergence was 10 days from late July to early August. Damage rate of chestnuts were 0.9-4.0% on average with this crown insecticide spraying with diflubenzuron, while 30.4% when not treated. Control effectiveness of this insecticide spraying was 92%(86.7-97.0%). In conclusion, effectual times and number of insecticide application with sprinkle system against peach pyralid moth were from early July to late August and four or five times at ten or fifteen day intervals, respectively.

Production of Microbial Insecticide Using Bacillus thuringiensis BT17 for the Control of Lepidopteran Larvae (Bacillus thuringiensis BT17 균주를 이용한 인시목 유충 방제용 미생물 살충제 생산)

  • Ahn, Kyung-Joon;Lee, Tae-Geun
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2010
  • Insecticidal crystalline toxin producing Bacillus thuringiensis BT17 strain was isolated and identified as B. thuringiensis serovar colmeri by 16S rRNA analysis. BT17 strain produced crystalline ${\delta}$-endotoxin against to Lepidopteran larvae effectively on the culture broth of soybean meal and skim milk, $30^{\circ}C$ and 36 h shaking culture of 280 rpm. The maximum colony forming unit achieved when the culture was continued for 24 h, but the number of crystals increased until 36 h in the 200 L fermentor. Liquid type of biological insecticide product was made, and after 3 months storage in $20^{\circ}C$ the number of crystals was increased up to twice than beginning. Biocontrol effect of BT17 insecticide product was better in Plutella xylostella than in Spodoptera exigua, and the toxicity to animals was negligible.