• Title/Summary/Keyword: inquiry level

Search Result 369, Processing Time 0.026 seconds

The Effects of Using Science Notebooks in the Open Inquiry Activities by Cognitive Levels (인지 수준에 따른 자유 탐구 활동에서 과학 탐구 노트의 활용 효과)

  • Lee, Sang-Gyun
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.2
    • /
    • pp.242-254
    • /
    • 2011
  • The purpose of this study was to understand the teaching effects according to the cognitive levels after conducting inquiry activities using science notebooks in the open inquiry activities of the elementary science class. The results of this study were as follow. first, students having the open inquiry activities using science notebooks showed improvement in scientific inquiry abilities in both groups with the low and high cognitive level. Second, regarding the changes of scientific attitudes, both groups with the low and high cognitive level exhibited improvement. According to the result of analyzing interaction between the cognitive level and class treatment on the effects for scientific inquiry abilities and scientific attitudes, there was no difference by the cognitive level. And the use of science notebooks in open inquiry activities had effects on improving scientific inquiry abilities and scientific attitudes regardless of the cognitive level.

Analysis of Inquiry Activities in High School Biology Textbooks Used in China and Korea

  • Kim, Seju;Liu, Enshan
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.8
    • /
    • pp.1367-1377
    • /
    • 2012
  • Inquiry activity is a major source of student investigation which both of the national curriculum standards strongly emphasize for achieving scientific literacy. The purpose of this study was to examine inquiry activities incorporated in high school biology textbooks used in China and Korea. The inquiry activities were examined with regard to inquiry level and science process skills. Bell's and a modification of Padilla's framework were used in these analyses. Results show that the Korean textbooks were more exclusively occupied by simple inquiry activities - None of them provided activity more complex than level 2 inquiry. In addition, the Korean textbooks had uniformly basic science process skills, whereas their Chinese counterparts gave students some challenges for higher level process skills. Therefore, it cannot be guaranteed that the activities in the Korean textbooks are helpful in guiding students toward a gradual progression to high-level inquiry. Implications for inquiry-based science education were suggested based on the results of the study.

Analysis of Elementary Teachers' Understanding Level and Actual State About Scientific Inquiry (초등교사의 과학적 탐구 이해의 수준과 실태 분석)

  • Lee, Dongseung;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.280-288
    • /
    • 2019
  • The purpose of this study is to draw implication for scientific inquiry study by investigating level of understanding and actual state regarding the elementary school teachers' scientific inquiry. The survey was conducted toward 42 elementary school teachers who work at the D city by using questionnaire of Views About Scientific Inquiry. Actual state of understanding of scientific inquiry was investigated by categorized the responses to the level of understanding of the eight aspects of scientific inquiry in three levels (informed, mixed, naive) based on analysis criteria. And analyze whether the characteristic of the subjects affect to level of understanding about aspect of scientific inquiry. As a result of the analysis, the two aspects among the eights aspects of scientific inquiry; 'Inquiry procedures are guided by the question asked' and 'Research conclusions must be consistent with the data collected' were appeared to have high rates of informed level of understanding. In the remaining six perspectives, most of elementary school teachers had naive and mixed level of understanding, so informed level of understanding took a relatively low proportion. It implies that elementary school teachers who teach inquiry in the field have limit to understand about scientific inquiry. These results indicated that experiences that have taught students and science related training courses that open sofar have a little influence to increase comprehension about scientific inquiry. Therefore, it is required to reinforce the teachers' understanding about scientific inquiry and to formulate different form of plan unlike existing way of teaching for teaching scientific inquiry.

The Analysis of Group Inquiry Process by Inquiry Process Supporting Methods in Computer Supported Intentional Learning Environments (컴퓨터 지원 의도적 학습환경에서 탐구과정 지원방식에 따른 집단의 탐구과정 분석)

  • Kim, Jee-Il
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.3
    • /
    • pp.47-65
    • /
    • 2006
  • For the purpose of analysis, the supporting methods for inquiry process is divided into 3 types; when CSILE supports low-level of basic inquiry process, when CSILE supports high-level of integrated inquiry process and when CSILE supports both low-level and high-level of inquiry process. Strauss and Corbin's(1998) grounded theory was used to analyze inquiry process of learning groups. 48 elementary school students in 6th grade participated in this study. Those participants were assigned into 3 groups and each group consisted of 16 students. Then, participants studied a retarded unit in science subject cooperatively for 4 weeks using CSILE program. Through this extensive experiment, 3 types of inquiry model was revealed.

  • PDF

An Analysis of Inquiry Context Elements in the High School Science Textbooks (고등학교 과학 교과서의 탐구상황요소 분석)

  • Kim, Young-Ae;Sung, Min-Wung
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.1
    • /
    • pp.47-56
    • /
    • 2003
  • The present study was carried out to analyse the frequency(%) for five kinds of inquiry context elements for six kinds of the high school science textbooks in the 7th curriculum. All the elements was classified into three process achievement level such as the basic, supplementary and further level introduced firstly in the 7th curriculum. Five elements of the inquiry context categories appeared as pure scientific context(61.8%), everyday context(22.2%), natural environmental context(7.7%), techno-industrial context(5.9%), and social context(2.4%) in the basic, supplementary and further level. Social context wasn't appeared in the supplementary level. In five elements of inquiry context, total elements appeared 7,139(85.5%) kfrequencies in the basic level and 691(8.1%) frequencies in the further level. However total elements appeared 529(6.4%) frequencies in the supplementary level. The kinds and frequencies of the elements for the inquiry context suggested in the basic level were more than those in the supplementary and in the further level. The social context was not appeared in the supplementary level. However five inquiry context elements were all appeared in the basic and further level.

Elementary School Teachers' Beliefs of Inquiry and practice of Science Performance Assessment (초등학교 교사의 탐구에 대한 신념과 과학과 수행평가의 실제)

  • Ko, Min-Seok;Kim, Eun-Ae;Heo, Jin-Mi;Yang, Il-Ho
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.6 no.2
    • /
    • pp.124-135
    • /
    • 2013
  • The purpose of this study was to find the relationship between elementary school teachers' beliefs of inquiry and science performance assessment. To collect data for analyzing elementary school teachers' beliefs of inquiry and their practice of science performance assessment, the researcher was surveyed with elementary school teachers by open-ended questionnaires and interview. The findings of this study were as follows; First, Most of elementary school teachers beliefs of inquiry was shown as constructivist tendency. This view of inquiry involves watching and doing experiments, and the skills of thinking processes, in which learners make their own interpretations rather than merely acquiring preexisting knowledge structures. Second, for content knowledge, participants' preception about the target of science performance assessment involved assessing application of science knowledge rather than basic level of substantive knowledge. For inquiry process, participants' preception about the target of science performance assessment involved assessing the lower level of inquiry rather than the higher level of inquiry. Most of participants was measured using a paper and pencil test for the actual evaluation methods due to the ease and objectivity of the assessment, the lack of understanding how to perform the performance evaluation process and method. Especially, participants who recognize that the higher level of inquiry was used performance and informal mode of assessing.

The Comparative Analysis of Inquiry Activity in Primary Science Curricular Materials of Korea and SCIIS (한국의 국민학교 자연 교과서와 SCIIS의 탐구 활동 버교 분석)

  • Kim, Jin-Yong;Chun, Wan-Ho;Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.1
    • /
    • pp.56-65
    • /
    • 1993
  • The purpose of this study is to analyze the inquiry activities of SCIIS and Korea primary school science curricular meterials and to make suggestions for the improvement of inquiry learning based on the analysis The Scientific Inquiry Evaluation Inventory (SIEI: Myung Hur, 1984) was used to evaluate the inquiry activity content of the primary school "Science, Level-6" and "SCIIS, Level-6" textbooks. The results are as follows: 1) The inquiry activities of Korean science textbooks are stressing on gathering and organizing data, but rarely require students to formulate a hypothesis, to design an experiment. 2) The SCIIS textbooks relatively tended to put more weight on interpreting/ analysing data and hypothesizing/ designing experiments. 3)The Korean science textbooks had little concern about establishing hypothesis and designing experiments, interpreting / analysing data. 4) The SCIIS textbooks require students to perform a variety of inquiry skills when compare to Korean science textbooks. 5) Competition / Cooperation Scale checks the level of competition and cooperation among student teams inherent in science curricular materials. The result from each team is incorporated into the formation of a class result. The communication is required to formulate a synthesized class response, enhances cooperation among teams. The SCIIS(84%) is the higher than Korea(50%) in cooperation scale. 6) Korean science textbooks rarely require students to discuss about experiment when compare to SCIIS textbooks. 7) Korean science textbooks provide students with both inquiry problems and experimental procedure, or including answers SCIIS textbooks provide students with both inquiry problems and experimental procedure, or problems only. 8) The Korean textbooks emphasize demonstrating or verifying of the text while the SCIlS emphasize extending the content of the text in inquiry scope scsle. The inquiry pyramid which helps analysis the inquiry activity curriculum as a whole is one of type 1- the course is centered on gathering and organizing data. The SCIIS are better than the Korean science textbook in the light of proportion of interpreting / analysing data and hypothesizing / designing experiments.

  • PDF

An Analysis of Elementary Science-gifted Students' Argumentation during Small Group Science Inquiry using Concept Cartoon (개념 만화를 활용한 소집단 과학 탐구활동에서 나타난 초등과학 영재 학생들의 논증활동 분석)

  • Choi, Gwon Yong;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.115-128
    • /
    • 2014
  • Students' argumentation during science inquiry should be regarded important as it could help students to make meaningful connections between theories and experiments and to make scientific claims based on evidences. In this study, elementary science-gifted students' argumentation during small group inquiry was analyzed according to inquiry process. There were three stages of argumentation during students' inquiry. The first argumentation was to predict what would happen(Prediction stage). In this stage, the scientific problem was presented by concept cartoon as a way to start and to facilitate students' argumentation. The second argumentation was to design an experiment to solve the problem(Planning stage) and the third was to interpret the result of experiment(Interpretation stage). The discourse move, level of grounds and their relationship were analyzed to find the characteristics of argumentation during science inquiry. In terms of discourse move, 'Asking for opinion' was the most frequent whereas 'Claim' or 'Rebuttal' were rare. Students tended to listen to or ask others' opinion rather than provide their own claims or critics on others' opinion. 'Rebuttal' was shown a few times only during prediction and planning stage. There was no single 'Rebuttal' during interpretation stage. Students tended to easily accept or agree other student's interpretation of data instead of arguing their own ideas. In terms of level of grounds, students mostly provided their ideas without any attempt to justify their position. Especially during planning stage, students tended to suggest or decide ways of measuring or controlling variables without any grounds. They used evidences only a few times during prediction stage. In terms of relation between discourse move and level of grounds, students provided grounds most frequently when they dispute others' claims. The level of grounds were higher when they advocate or clarify their own or others' ideas than when they claim their ideas. The result of this study showed that the quality of elementary science-gifted students' argumentation during science inquiry was undesirable in many ways. Implications for scaffolding and facilitating argumentation during science inquiry were discussed.

The Development of An Instrument for Evaluating Inquiry Activity in Science Curricula (과학 탐구 평가표의 개발)

  • Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.4 no.2
    • /
    • pp.57-63
    • /
    • 1984
  • An inquiry approach in teaching science has been advocated by many science educators for the past few decades, and most elementary and secondary science curricula have incorporated it in varying degrees. It has been proven in recent studies, however, that there exists considerable discrepancy between the expectation of outcomes of the inquiry approach and the actuality. This in part implies that there is a somewhat urgent need for the systematic evaluation of the approach in teaching science. The purpose of this study is to develop a comprehensive instrument for evaluating inquiry teaching approaches embedded in science curricular materials. To develop a more valid and reliable instrument a set of empirical data was used in the developmental procedure, and most of the previous studies regarding inquiry teaching method and inquiry evaluation were consulted. The inquiry evaluation method developed in this study, called the Scientific Inquiry Evaluation Inventory (SIEI), is composed of three parts: (1) analyzing and coding each science process task of inquiry activity; (2) evaluating each inquiry activity as a whole; and (3) evaluating each science laboratory curriculum as a whole. The first part of the instrument consists of twenty science process categories and thirty subcategories grouped into four sections: (1) gathering and organizing data; (2) interpreting and analyzing data; (3) synthesizing results and evaluation; and (4) hypothesizing and designing an experiment. The science process categories are arranged according to the level of difficulty, psychological level of thinking, degree of creativity demand, and the model of the process of scientific inquiry, which is also developed in the study. The second part of the instrument contains four evaluation scales of inquiry activity: (1) competition/cooperation scale; (2) discussion scale; (3) openness scale; and (4) inquiry scope scale. And the last part consists of three methods for evaluating a science laboratory curriculum as a whole: (1) inquiry pyramid; (2) inquiry index; and (3) difficulty index. The instrument is designed to be used by teachers, science curriculum developers and science education evaluators for the purpose of diagnosing the nature and appropriateness of scientific inquiry introduced in secondary science curricular materials, especailly in laboratory work and field work.

  • PDF

- For the Development of Inquiring, integrated Science Curricular Materials - The Comparison and Analysis of Inquiry Activity between "The FAST Program" and "The Secondary Science Books" (탐구적 통합 과학 교재 개발을 위한, "FAST program"과 "중등 과학 교과서"의 탐구 활동 비교 분석)

  • Son, Yeon-A;Lee, Hack-Dong
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.1
    • /
    • pp.45-57
    • /
    • 1994
  • The purpose of this study is to verify whether the FAST program is the Inquiry Science Curricular Materials, through the Comparison and Analysis of Inquiry Activities between the FAST program and our Secondary Science Books. The results of this study are as follows ; 1. FAST has 226 tasks of the Inquiry Activities, which is analyzed over two times than our text. 2. In level one, FAST holds the parts of Synthesizing Results and Evaluation, Hypothesizing and Designing an Experiment but u.ese aren't found in our text. 3. In level two, our text is analyzed No Discussion 72.2%, Demonstrating or Verifying the Content of the Text 82%, but FAST has Discussion Guided 81.8%, and isn't found any tesk of Demonstrating or Verifying the Content of the text. 4. In level three, our text is exposed a typical type I and analyzed Inquiry Index 15-25 ( Middle ), but FAST is found type IV, excepting Manipulating Apparatus and Observation and analyzed Inquiry Index over 35 ( Very - High ). Therefore, FAST Program is proved to be the desirable Inquiry Science Curricular Materials. In future, this worker is to arrange the results of the following paper as follows ; 1. The verification of the FAST Program by means of the Integrated Science Curricular Materials. 2. The development of the Inquiring, Integrated Science Curricular Materials through the results of the preceding study.

  • PDF