• Title/Summary/Keyword: inquiry competency

Search Result 52, Processing Time 0.027 seconds

Analysis on Actual Condition of Chemistry Teachers' Scientific Competency Assessment Based on Inquiry Report (탐구보고서에 기반한 화학교사의 과학 역량 평가 실태 분석)

  • Kim, Hyunjung;Kim, Sungki
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.209-218
    • /
    • 2021
  • This study investigated the condition of chemistry teacher's student competency assessment based on the inquiry report. To this end, an inquiry report was collected for chemistry teachers who took the training at two universities that conducted the 2020 first-class chemistry teacher training. The science subject competencies presented in NAEA analysis framework was used to analyze what kind of competencies teachers assess students through inquiry reports. A total of 63 chemistry teachers submitted inquiry reports, which were analyzed by competency, sub-element of each competency, and detail element to analyze the actual situation. As a result of the study, most chemistry teachers reflected their 'scientific inquiry and problem-solving ability' in their evaluation through inquiry reports. 'Ability to understand and apply scientific principles', which is mainly evaluated through paper-based evaluation, was partially used as confirmation of prerequisite learning at the beginning of the inquiry and the weight of evaluating 'scientific communication skill' was not large. In 'scientific inquiry and problem-solving ability' through inquiry report, 'design and conduct explorations', 'data analysis and interpretation' and 'drawing conclusion and suggesting solution' were mainly assessed. However, 'discover and recognize problems' and 'development and use of model' were hardly assessed.

Proposal of Electronic Engineering Exploration Learning Operation Using Computing Thinking Ability

  • LEE, Seung-Woo;LEE, Sangwon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.110-117
    • /
    • 2021
  • The purpose of the study is to develop effective teaching methods to strengthen the major learning capabilities of electronic engineering learners through inquiry learning using computing thinking ability. To this end, first, in the electronic engineering curriculum, we performed teaching-learning through an inquiry and learning model related to mathematics, probability, and statistics under the theme of various majors in electronic engineering, focusing on understanding computing thinking skills. Second, an efficient electronic engineering subject inquiry class operation using computing thinking ability was conducted, and electronic engineering-linked education contents based on the components of computer thinking were presented. Third, by conducting a case study on inquiry-style teaching using computing thinking skills in the electronic engineering curriculum, we identified the validity of the teaching method to strengthen major competency. In order to prepare for the 4th Industrial Revolution, by implementing mathematics, probability, statistics-related linkage, and convergence education to foster convergent talent, we tried to present effective electronic engineering major competency enhancement measures and cope with innovative technological changes.

A Core Competency Model for Design Leadership Through Appreciative Inquiry (Appreciative Inquiry를 이용한 디자인 리더십 핵심역량 모델)

  • Lee, Han-Seung;Shin, Wan-Seon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.167-176
    • /
    • 2019
  • The purposes of this study are first to identify the core competences of design leadership and second to propose the characteristic and effective leadership capabilities required in the design field. To propose the capabilities of reliable and meaningful core competency of design leadership, we identified core competencies through a group of experts from the top group of design leaders (Design executives, head of the design institute) rather than using a survey study based on unspecified designers. In addition, the unique interview method, AI (Appreciated Inquiry) was also used to share the actual experiences and philosophies of the interviewers, regardless of the core competencies. This study revealed that the core competences of design leadership were different from those of conventional general leadership and MOT (Management of Technology) leadership capabilities. Besides, it provided opportunities for leaders in other fields to understand and collaborate on characteristics of the design field, while demonstrating the necessity and justification of unique leadership traits in the field of design.

Development of Data-Driven Science Inquiry Model and Strategy for Cultivating Knowledge-Information-Processing Competency (지식정보처리역량 함양을 위한 데이터 기반 과학탐구 모형 개발)

  • Son, Mihyun;Jeong, Daehong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.6
    • /
    • pp.657-670
    • /
    • 2020
  • The knowledge-information-processing competency is the most essential competency in a knowledge-information-based society and is the most fundamental competency in the new problem-solving ability. Data-driven science inquiry, which emphasizes how to find and solve problems using vast amounts of data and information, is a way to cultivate the problem-solving ability in a knowledge-information-based society. Therefore, this study aims to develop a teaching-learning model and strategy for data-driven science inquiry and to verify the validity of the model in terms of knowledge information processing competency. This study is developmental research. Based on literature, the initial model and strategy were developed, and the final model and teaching strategy were completed by securing external validity through on-site application and internal validity through expert advice. The development principle of the inquiry model is the literature study on science inquiry, data science, and a statistical problem-solving model based on resource-based learning theory, which is known to be effective for the knowledge-information-processing competency and critical thinking. This model is titled "Exploratory Scientific Data Analysis" The model consisted of selecting tools, collecting and analyzing data, finding problems and exploring problems. The teaching strategy is composed of seven principles necessary for each stage of the model, and is divided into instructional strategies and guidelines for environment composition. The development of the ESDA inquiry model and teaching strategy is not easy to generalize to the whole school level because the sample was not large, and research was qualitative. While this study has a limitation that a quantitative study over large number of students could not be carried out, it has significance that practical model and strategy was developed by approaching the knowledge-information-processing competency with respect of science inquiry.

Analysis of Awareness of Teachers for Core Competencies and Scientific Core Competencies (핵심역량과 과학과 교과역량에 대한 초등 교사의 인식 분석)

  • Ha, Ji-hoon;Shin, Youngjoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.426-441
    • /
    • 2016
  • The purpose of this study was getting the information for successful application to the national curriculum and students' core competencies enhancement, through investigation about competencies discussed in 2015 revised national curriculum development process and analysis about perception of 150 elementary school teachers in study. The results were as follows : Communication skill is considered to be the most important. Thinking ability what has been important traditionally is the middle of the rankings. Elementary school teachers think that a competency is specific to a subject. From this point of view, Creative/Scientific Problem-Solving Ability is the most important in science. They think that the enhancing of the ability of inquiry performance is highlighted in current science class. On elementary school teachers' awareness, inquiry model is the most effective in enhancing of scientific thinking and the ability of inquiry performance. And STS instruction model is in the other. PBL learning model and experimental inquiry model is the most effective in enhancing a competency has the highest feasibility like scientific thinking or the ability of inquiry performance.

The Specification of Evaluative Objectives and Selection of Behavioral Elements for Measuring Science Inquiry Skills of University Competency Tests (대학(大學) 수학(修學) 용력(龍力) 의험(議驗)의 자연과학(自然科學) 탐구(探究) 능력(能力) 평가(評價)를 위(爲)한 행동(行動) 요소(要素)의 추출(抽出)과 평가(評價) 목표(目標)의 상세화(詳細化) 연구(硏究) II)

  • Woo, Jong-Ok;Lee, Kyung-Hoon;Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.12 no.2
    • /
    • pp.81-95
    • /
    • 1992
  • The purpose of the study is to specify the evaluative objectives of science process skills and to serve as an evaluative criterion for the development of university competency test. The followings are the results of this study. (l) Five steps as a teaching and learning model of science are suggested for the improvement of science inquiry skills. (2) Three dimensional taxomony was presented to evaluate the science process skills of university competency test. (3) Sixteen behavioral elements were selected from the science process model and defined operationally. (4) 146 evaluative objectives were specified according to each behavioral element based on the results presented above, the science inquiry model and the evaluative objectives wilt be contributed to teaching and learning strategies for the improvement of science process skills including basic concepts and contents, and problematic situation in science.

  • PDF

Suggestions for Improvement of Industrial High School Education Based on the Value of Competency-Based Education (능력 중심 교육의 가치가 공업계 고등학교 교육의 운영 개선에 주는 시사점)

  • Kim, Hee-Pil
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.33-44
    • /
    • 2005
  • The purpose of this study is to suggest plans to improve the industrial high school through the inquiry of Competency-Based Education(CBE). The suggestions are as followings: (1) Selection and organization of the educational contents of industrial high school must be based on job analysis. (2) Instructional objectives must be defined as a performance objective and enabling objectives. (3) Instruction must be individualized in method, the instructional contents must be organized in the unit of module. (4) Evaluation system must be not knowledge based but performance-based. (5) Physical Environment of work shop must be organized based on facilities, equipments and machines abstracted by job analysis. (6) Competency-Based Teacher Education(CBTE) program is required to train competent teachers in practice.

The Effects of Chemistry Class Using Computer-Based Science Inquiry Program on Positive Experiences about Science, Science Core Competency, and Academic Achievement (컴퓨터 기반 과학 탐구 프로그램을 활용한 화학 수업이 과학 긍정경험, 과학과 핵심역량 및 학업성취도에 미치는 영향)

  • Kim, Sungki;Kim, Hyunjung
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.107-123
    • /
    • 2022
  • The purpose of this study is to investigate the effects of learning using computer-based science inquiry program. To this end, the three lessons computer-based science inquiry were developed in domain of material's properties. The developed program was put into K middle school located in Seoul and the effects were verified. For the experimental group, the three lessons computer-based science inquiry related to the separation of mixture were introduced, and for the comparison group, the contents presented in the textbook were introduced as a teacher-centered teaching method. To verify the effects of the program, 2-way ANCOVA was performed on positive experiences about science and science core competency, and 2-way ANOVA was performed on academic achievement. As a result of the study, there were significant differences between the two groups in positive experiernces about science and scientific core competencies and academic achievement (p<.05), and group*gender interaction effect was only significant in academic achievement (p<.05). From the results of this study, we could see the possibility of using a computer-based science inquiry program as a chemistry teaching method that enables sustainable scientific inquiry.

THE SPECIFICATION OF EVALUATIVE OBJECTIVES AND SELECTION OF BEHAVIORAL ELEMENTS TO MEASURE. SCIENCE INQUIRY SKILLS RELATING TO EARTH SCIENCE AMONG QUANTITATIVE(MATHEMATICAL) INQUIRY DOMAIN OF UNIVERSITY COMPETENCY TEST (대학 수학능력 시혐의 수리.탐구 영역중 지구과학 교과에 관련된 탐구능력 측정을 위한 행동요소의 추출과 평가 목표의 상세화 연구 I)

  • Woo, Jong-Ok;Lee, Kyung-Hoon;Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.11 no.1
    • /
    • pp.83-96
    • /
    • 1991
  • The purpose of this study is to construct the evaluative objectives of science inquiry skills specificationaly. Specification of evaluative objectives will be able to serve as evaluative criterion for development of a test of the integrated science process skills. The results in this study are as follows ; (l) The selections of science inquiry skills from the previous developed taxonomies are observation, measurement, formulating hypothesis, designing an experiment and controlling variables, inference, predicting(including intrapolation and extrapolation), organizing data and interpreting, defining operationally, formulating a generalization or model, drawing a conclusion. (2) The definitions of the selected science inquiry skills are made operationally. (3) Evaluative objectives relating to the selected science inquiry skills are specified with the previous developed items. Based on the above results, total 9 science inquiry skills are selected and 72 evaluative objectives are specified.

  • PDF

Analysis of problem solving competency and types of tasks in elementary mathematics textbooks: Challenging/Thinking and inquiry mathematics in the domain of number and operation (초등 수학교과서의 문제해결 역량 및 과제 유형 분석: 수와 연산 영역의 도전/생각 수학과 탐구 수학을 중심으로)

  • Yeo, Sheunghyun;Suh, Heejoo;Han, Sunyoung;Kim, Jinho
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.431-449
    • /
    • 2021
  • Elementary mathematics textbooks present contents for enhancing problem solving competency. Still, teachers find teaching problem solving to be challenging. To understand the supports textbooks are suggesting, this study examined tasks from the challenging/thinking and inquiry mathematics. We analyzed 288 mathematical activities based on an analytic framework from the 2015 revised mathematics curriculum. Then, we employed latent class analysis to classify 83 mathematical tasks as a new approach to categorize tasks. As a result, execution of the problem solving process was emphasized across grade levels but understanding of problems was varied by grade levels. In addition, higher grade levels had more opportunities to be engaged in collaborative problem solving and problem posing. We identified three task profiles: 'execution focus', 'collaborative-solution focus', 'multifaceted-solution focus'. In Grade 3, about 80% of tasks were categorized as the execution profile. The multifaceted-solution was about 40% in the thinking/challenging mathematics and the execution profile was about 70% in Inquiry mathematics. The implications for developing mathematics textbooks and designing mathematical tasks are discussed.