• Title/Summary/Keyword: input parameter

Search Result 1,639, Processing Time 0.029 seconds

Design of Time-varying Sliding Surface for Higher-order Uncertain Systems (고차 불확실 시스템을 위한 시변 슬라이딩 평면의 설계)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.37-44
    • /
    • 1999
  • In this paper, we present a new sliding surface with a time-varying repeated root for fast and robust tracking of higher-order uncertain systems. The repeated root is moved to target one with stabilizing the closed-loop time-varying system in sliding mode. This initial root is obtained so that shifting distance of the surface may be minimized with respect to an initial error, and the intercept is produced so that the surface may pass the initial error. Under the allowable input, fast shifting of the surface and movement of the repeated root enable the error convergence rate to be increased. The proposed sliding mode control makes the error always remain on the surface from the beginning, and therefore, the system is more insensitive to parameter uncertainties and external disturbances. In simulation, the effectiveness of the proposed method is proved by comparison with the conventional one.

  • PDF

A Sensing Scheme Utilizing Current-Mode Comparison for On-Chip DC-DC Converter (온칩 DC-DC 변환기를 위한 전류 비교 방식의 센서)

  • Kim, Hyung-Il;Song, Ha-Sun;Kim, Bum-Soo;Kim, Dae-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.86-90
    • /
    • 2007
  • An efficient sensing scheme applicable to DC-DC converters is proposed. The output voltage of the DC-DC converter is fed back and converted to a current signal at the input terminal of the sensor to decide if it is in the tolerable range. The comparison is accomplished by a current push-pull action. With the embedded reference current in the sensor realized from the reference voltage. The advantages of the scheme lie in the fairly accurate and efficient implementation in terms of power consumption and chip size overhead compared with conventional voltage-mode schemes as the major parameter in converting voltage to current is determined by (W/L) aspect ratio of the core transistors. In this paper, a DC-DC converter of 5V output from battery range of 2.2V${\sim}$3.6V adopting the proposed sensing scheme is implemented in a 0.35um CMOS process to prove the validity of the scheme.

Simulator for High Resolution Synthetic Aperture Radar Image Formation and Image Quality Analysis (고해상도 SAR 영상 형성 및 품질 분석을 위한 시뮬레이터)

  • Jung, Chul-Ho;Oh, Tae-Bong;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.997-1004
    • /
    • 2007
  • High resolution synthetic aperture radar image could be sensitive to the various parameters of the payload, platform, and ground system. In this paper, a parameter based SAR simulator is presented for two-dimensional image formation and image quality analysis. Functional modules are implemented by Matalb code and GUI for the flexibility and expandability. Main function of this simulator includes the SAR input signal generation, range-doppler algorithm(RDA) based SAR image formation, and the SAR image quality analysis which is relevant to the SAR system design parameters. This simulator can effectively be used for the SAR image quality performance evaluation, which can be applicable to the airborne as well as spaceborne SAR system design and analysis.

Thermo-Elastic Analysis, 3-Dimensional Stress Analysis and Design of Carbon/Carbon Brake Disk (탄소/탄소 브레이크 디스크의 열탄성 해석과 3차원 응력해석 및 설계)

  • 오세희;유재석;김천곤;홍창선;김광수
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • This paper presents the thermo-elastic analysis for searching the behavior of carbon/carbon brake system during the braking period and the 3-D stress analysis to find the shape of the brake disk which is safe to the failure. The mechanical properties of the carbon/carbon brake disk were measured for both in-plane and out of plane directions. The mechanical properties were used as the input of the thermo-elastic analysis and 3-dimensional stress analysis for the brake disk. The gap between rotor clip and clip retainer is an important parameter in the loading transfer mechanism of the rotor disk. The change of gap was considered both the mechanical deformation and thermal deformation. Because the rotor clip and clip retainers were not contacted, they were excluded from the analysis model. Rotor disk was modeled by using the cyclic symmetry condition. The contact problems between rotor clip and key drum as well as between rotor disk and rotor were considered. From the results of the 3-D stress analysis, the stress concentration at the key hole of the brake disk was confirmed. The stress distributions were studied thor the variation of the rotation angle of the contact surface and the radius of curvature at the key hole part.

Applying the Fuzzy Decision-Making Method for Program Evaluation and Management Policy of Vietnamese Higher Education

  • TONG, Kiet Hao;NGUYEN, Quyen Le Hoang Thuy To;NGUYEN, Tuyen Thi Mong;NGUYEN, Phong Thanh;VU, Ngoc Bich
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.719-726
    • /
    • 2020
  • Education policy is a dynamic process featuring social development trends. The world countries have focused their education program on empowering the learners for future life and work. This paper aims to assess the higher education curriculum based on a survey of 280 students, employers, alumni, and lecturers in both social sciences and natural sciences in Ho Chi Minh City, Vietnam. The fuzzy decision-making method, namely the Fuzzy Extent Analysis Method (F-EAM), was applied to measure the relative weight of each parameter. Seven factors under the curriculum development have been put in the ranking. Input with emphasis on foreign language was the highest priority in curriculum development, given the expected demand of the labor market. Objective and learning outcome and teaching activities ranked second and third, respectively. The traditional triangle of teaching content, methodology, and evaluation and assessment are still proven their roles, but certain modifications have been defined in the advanced curriculum. Teaching facilities had the least weight among the seven dimensions of curriculum development. The findings are helpful for education managers to efficiently allocate scarce resources to reform the curriculum to bridge the undergraduate quality gap between labor supply and demand, meeting the dynamic trends of social development.

A Comparative Study of Speech Parameters for Speech Recognition Neural Network (음성 인식 신경망을 위한 음성 파라키터들의 성능 비교)

  • Kim, Ki-Seok;Im, Eun-Jin;Hwang, Hee-Yung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.61-66
    • /
    • 1992
  • There have been many researches that uses neural network models for automatic speech recognition, but the main trend was finding the neural network models and learning rules appropriate to automatic speech recognition. However, the choice of the input speech parameter for the neural network as well as neural network model itself is a very important factor for the improvement of performance of the automatic speech recognition system using neural network. In this paper we select 6 speech parameters from surveys of the speech recognition papers which uses neural networks, and analyze the performance for the same data and the same neural network model. We use 8 sets of 9 Korean plosives and 18 sets of 8 Korean vowels. We use recurrent neural network and compare the performance of the 6 speech parameters while the number of nodes is constant. The delta cepstrum of linear predictive coefficients showed best result and the recognition rates are 95.1% for the vowels and 100.0% for plosives.

  • PDF

A Scheduling Scheme based on Premium to Support COS(Class of Service) for Satellite On-Board CICQ(Combined Input-Crosspoint Queueing) Crossbar Switch (위성탑재 CICQ Crossbar Switch에서 COS 지원을 위한 프리미엄기반 우선순위 Scheduler 기법)

  • Kong, Nam-Soo;Ryu, Keun-Ho;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1065-1071
    • /
    • 2009
  • Satellite application services can be divided into realtime services like voice communications and non-real time services like traditional data communications. To support both types of services on the same On-Board Switching(OBS), a scheduler which depends on their service classes is required. A fixed priority scheduling policy has a starvation problem. In this paper we propose a scheduling scheme based on premium and age. Premium is a fixed value which is given to a certain class of services. Age is another parameter of the scheduling policy and it will be increased by one for every scheduling cycle. The scheme we propose chooses a packet which has the largest sum of its age and premium. Simulation results indicate that the proposed approach shows better performance in both average cell delay and std-dev of cell delay for the lower class of service. There is no staying in infinite starvation state.

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

A Case Study of Prediction and Analysis of Unplanned Dilution in an Underground Stoping Mine using Artificial Neural Network (인공신경망을 이용한 지하채광 확정선외 혼입 예측과 분석 사례연구)

  • Jang, Hyongdoo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.