• 제목/요약/키워드: input ground motion

검색결과 196건 처리시간 0.02초

기초-지반 상호작용을 고려한 교량의 다지점 입력 지진해석 기법 (Seismic Response Analysis Method of Bridge Considering Foundation-Soil Interaction and Multi-support Input Motion)

  • 김효건;최광규;엄영호;권영록
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.284-291
    • /
    • 2006
  • This paper presents a seismic response analysis of bridge structures considering foundation-soil interaction and multi-support input motion. In the earthquake analysis of structures it is usually assumed that the input ground motion is the same at all supports. However, this assumption is not justified for long structures like bridges, because observations have shown the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, analysis for foundation-soil interaction always must be peformed. To consider foundation-soil interaction, soil response analysis is preceded, and after determining the material characteristics of foundation element obtained by foundation-soil interaction analysis at the frequency domain, the seismic response analysis of bridge superstructure with the equivalent spring and damper is performed. Finally, influences of multi-support input motion, which are affected by different soil characteristics, are also considered in this paper.

  • PDF

Parameters affecting the seismic response of buildings under bi-directional excitation

  • Fontara, Ioanna-Kleoniki M.;Kostinakis, Konstantinos G.;Manoukas, Grigorios E.;Athanatopoulou, Asimina M.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.957-979
    • /
    • 2015
  • The present paper investigates the influence of the orientation of the ground-motion reference axes, the seismic incident angle and the seismic intensity level on the inelastic response of asymmetric reinforced concrete buildings. A single storey asymmetric building is analyzed by nonlinear dynamic analyses under twenty bi-directional ground motions. The analyses are performed for many angles of incidence and four seismic intensity levels. Moreover three different pairs of the horizontal accelerograms corresponding to the input seismic motion are considered: a) the recorded accelerograms, b) the corresponding uncorrelated accelerograms, and c) the completely correlated accelerograms. The nonlinear response is evaluated by the overall structural damage index. The results of this study demonstrate that the inelastic seismic response depends on the orientation of the ground-motion reference axes, since the three individual pairs of accelerograms corresponding to the same ground motion (recorded, uncorrelated and completely correlated) can cause different structural damage level for the same incident angle. Furthermore, the use of the recorded accelerograms as seismic input does not always lead to the critical case of study. It is also shown that there is not a particular seismic incident angle or range of angles that leads to the maximum values of damage index regardless of the seismic intensity level or the ground-motion reference axes.

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.

Critical earthquake input energy to connected building structures using impulse input

  • Fukumoto, Yoshiyuki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1133-1152
    • /
    • 2015
  • A frequency-domain method is developed for evaluating the earthquake input energy to two building structures connected by viscous dampers. It is shown that the earthquake input energies to respective building structures and viscous connecting dampers can be defined as works done by the boundary forces between the subsystems on their corresponding displacements. It is demonstrated that the proposed energy transfer function is very useful for clear understanding of dependence of energy consumption ratios in respective buildings and connecting viscous dampers on their properties. It can be shown that the area of the energy transfer function for the total system is constant regardless of natural period and damping ratio because the constant Fourier amplitude of the input acceleration, relating directly the area of the energy transfer function to the input energy, indicates the Dirac delta function and only an initial velocity (kinetic energy) is given in this case. Owing to the constant area property of the energy transfer functions, the total input energy to the overall system including both buildings and connecting viscous dampers is approximately constant regardless of the quantity of connecting viscous dampers. This property leads to an advantageous feature that, if the energy consumption in the connecting viscous dampers increases, the input energies to the buildings can be reduced drastically. For the worst case analysis, critical excitation problems with respect to the impulse interval for double impulse (simplification of pulse-type impulsive ground motion) and multiple impulses (simplification of long-duration ground motion) are considered and their solutions are provided.

An investigation on the maximum earthquake input energy for elastic SDOF systems

  • Merter, Onur
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.487-499
    • /
    • 2019
  • Energy-based seismic design of structures has gradually become prominent in today's structural engineering investigations because of being more rational and reliable when it is compared to traditional force-based and displacement-based methods. Energy-based approaches have widely taken place in many previous studies and investigations and undoubtedly, they are going to play more important role in future seismic design codes, too. This paper aims to compute the maximum earthquake energy input to elastic single-degree-of-freedom (SDOF) systems for selected real ground motion records. A data set containing 100 real ground motion records which have the same site soil profiles has been selected from Pacific Earthquake Research (PEER) database. Response time history (RTH) analyses have been conducted for elastic SDOF systems having a constant damping ratio and natural periods of 0.1 s to 3.0 s. Totally 3000 RTH analyses have been performed and the maximum mass normalized earthquake input energy values for all records have been computed. Previous researchers' approaches have been compared to the results of RTH analyses and an approach which considers the pseudo-spectral velocity with Arias Intensity has been proposed. Graphs of the maximum earthquake input energy versus the maximum pseudo-spectral velocity have been obtained. The results show that there is a good agreement between the maximum input energy demands of RTH analysis and the other approaches and the maximum earthquake input energy is a relatively stable response parameter to be used for further seismic design and evaluations.

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.

Correlation of elastic input energy equivalent velocity spectral values

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.957-976
    • /
    • 2015
  • Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have demonstrated the potential of these intensity measures in the prediction of the seismic structural response. Although some ground motion prediction equations have been developed for these parameters, they only provide marginal distributions without information about the joint occurrence of the spectral values at different periods. In order to build new prediction models for the two equivalent velocities, a large set of ground motion records is used to calculate the correlation coefficients between the response spectral values corresponding to different periods and components of the ground motion. Then, functional forms adopted in models from the literature are calibrated to fit the obtained data. A new functional form is proposed to improve the predictions of the considered models from the literature. The components of the ground motion considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as the prediction of derived intensity measures and the development of conditional mean spectra.

고진등수 영역이 보강된 APR1400 설계지반응답스펙트럼의 개발 (Development of the DGRS enriched in the high frequency range for APR1400)

  • 장영선;김태영;주광호;김종학
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.67-74
    • /
    • 2001
  • This paper presents the Safe Shutdown Earthquake(SSE) input motion for the seismic design of the Advanced Power Reactor 1400(APR1400). The Design Ground Response Spectra(DGRS) far the SSE is based on the design spectrum specified in regulatory Guide(RG) 1.60 of U.S. Nuclear Regulatory Commission(US NRC), anchored to a Peak Ground Acceleration(PGA) of 0.3g and enriched in the high frequency range. This SSE seismic input motion is to be applied to the seismic analysis as the free-field seismic motion at the ground surface of both the rock and generic soil sites fur APRI1400. The enrichment for APR1400 seismic input motion is performed considering the current US NRC regulations, the seismic hazard studies performed by the Lawrence Livermore National Laboratory (LINL) and Electric Power Research Institute(EPRI) for the Central and Eastern United States nuclear power plant sites, and the seismic input motions used in the design certifications of the three existing U.S. advanced standard plants. It is represented by a set of DGRS and the accompanying Target Power Spectral Density(PSD) Function in both the horizontal and vertical directions.

  • PDF

Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures

  • Chou, Jui-Ching;Lin, Der-Guey
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 2020
  • In metropolitan areas, the quantity and density of the underground structure increase rapidly in recent years. Even though most damage incidents of the underground structure were minor, there were still few incidents causing a great loss in lives and economy. Therefore, the safety evaluation of the underground structure becomes an important issue in the disaster prevention plan. Liquefaction induced uplift is one important factor damaging the underground structure. In order to perform a preliminary evaluation on the safety of the underground structure, simplified prediction equations were introduced to provide a first order estimation of the liquefaction induced uplift. From previous studies, the input motion is a major factor affecting the magnitude of the uplift. However, effects of the input motion were not studied and included in these equations in an appropriate and rational manner. In this article, a numerical simulation approach (FLAC program with UBCSAND model) is adopted to study effects of the input motion on the uplift. Numerical results show that the uplift and the Arias Intensity (Ia) are closely related. A simple modification procedure to include the input motion effects in the Sasaki and Tamura prediction equation is proposed in this article for engineering practices.

인공 매립 지반에서의 지진파 증폭 특성 (Seismic Motion Amplification Characteristics at Artificial Reclaimed Land)

  • 김용성;문용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1134-1139
    • /
    • 2005
  • Seismic motion amplification owing to the input motion level at bedrock is one of the important topics to understand various geomaterials behavior. The extremely valuable borehole records at Port Island were obtained during the 1995 Hyogoken Nanbu Earthquake and also before and after the main event. In this study, the seismic motion amplification at the soft reclaimed ground was discussed. Comparison of measured records with numerical simulation results were made with focus on seismic motion amplification characteristics at the soft reclaimed ground.

  • PDF