• Title/Summary/Keyword: input device

Search Result 1,445, Processing Time 0.025 seconds

User-centric Immersible and Interactive Electronic Book based on the Interface of Tabletop Display (테이블탑 디스플레이 기반 사용자 중심의 실감형 상호작용 전자책)

  • Song, Dae-Hyeon;Park, Jae-Wan;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2009
  • In this paper, we propose user-centric immersible and interactive electronic book based on the interface of tabletop display. Electronic book is usually used for users that want to read the text book with multimedia contents like video, audio, animation and etc. It is based on tabletop display platform then the conventional input device like keyboard and mouse is not essentially needed. Users can interact with the contents based on the gestures defined for the interface of tabletop display using hand finger touches then it gives superior and effective interface for users to use the electronic book interestingly. This interface supports multiple users then it gives more diverse effects on the conventional electronic contents just made for one user. In this paper our method gives new way for the conventional electronics book and it can define the user-centric gestures and help users to interact with the book easily. We expect our method can be utilized for many edutainment contents.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Optical Encryption of Binary Information using 2-step Phase-shifting Digital Holography (2-단계 위상 천이 디지털 홀로그래피를 이용한 이진 정보 광 암호화 기법)

  • Byun, Hyun-Joong;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.401-411
    • /
    • 2006
  • We propose an optical encryption/decryption technique for a security system based on 2-step phase-shifting digital holography. Phase-shilling digital holography is used for recording phase and amplitude information on a CCD device. 2-step phase-shifting is implemented by moving the PZT mirror with phase step of 0 or ${\pi}/2$. The binary data and the key are expressed with random code and random phase patterns. The digital hologram is a Fourier transform hologram and is recorded on CCD with 256 gray level quantization. We remove the DC term of the digital hologram fur data reconstruction, which is essential to reconstruct the original binary input data/image. The error evaluation fer the decrypted binary data is analyzed. One of errors is a quantization error in detecting the hologram intensity on CCD, and the other is generated from decrypting the data with the incorrect key. The technique using 2-step phase-shifting holography is more efficient than a 4-step method because 2-step phase-shifting holography system uses less data than the 4-step method for data storage or transmission. The simulation shows that the proposed technique gives good results fur the optical encryption of binary information.

Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter

  • Rahimzadegan, Aso;Granpayeh, Nosrat;Hosseini, Seyyed Poorya
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.261-273
    • /
    • 2014
  • In this paper, metal insulator metal (MIM) plasmonic slot cavity narrow band-pass filters (NBPFs) are studied. The metal and dielectric of the structures are silver (Ag) and air, respectively. To improve the quality factor and attenuation range, two novel NBPFs based on tapered structures and double cavity systems are proposed and numerically analyzed by using the two-dimensional (2-D) finite difference time domain (FDTD) method. The impact of different parameters on the transmission spectrum is scrutinized. We have shown that increasing the cavities' lengths increases the resonance wavelength in a linear relationship, and also increases the quality factor, and simultaneously the attenuation of the wave transmitted through the cavities. Furthermore, increasing the slope of tapers of the input and output waveguides decreases attenuation of the wave transmitted through the waveguide, but simultaneously decreases the quality factor, hence there should be a trade-off between loss and quality factor. However, the idea of adding tapers to the waveguides' discontinuities of the simple structure helps us to improve the device total performance, such as quality factor for the single cavity and attenuation range for the double cavity. According to the proposed NBPFs, two, three, and four-port power splitters functioning at 1320 nm and novel ultra-compact two-wavelength and triple-wavelength demultiplexers in the range of 1300-1550 nm are proposed and the impacts of different parameters on their performances are numerically investigated. The idea of using tapered waveguides at the structure discontinuities facilitates the design of ultra-compact demultiplexers and splitters.

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence (심탄도와 인공지능을 이용한 혈당수치 예측모델 연구)

  • Choi, Sang-Ki;Park, Cheol-Gu
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.257-269
    • /
    • 2021
  • The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Voice Assistant for Visually Impaired People (시각장애인을 위한 음성 도우미 장치)

  • Chae, Jun-Gy;Jang, Ji-Woo;Kim, Dong-Wan;Jung, Su-Jin;Lee, Ik Hyun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • People with compromised visual ability suffer from many inconveniences in daily life, such as distinguishing colors, identifying currency notes and realizing the atmospheric temperature. Therefore, to assist the visually impaired people, we propose a system by utilizing optical and infrared cameras. In the proposed system, an optical camera is used to collect features related to colors and currency notes while an infrared camera is utilized to get temperature information. The user is enabled to select the desired service by pushing the button and the appreciate voice information are provided through the speaker. The device can distinguish 16 kinds of colors, four different currency notes, and temperature information in four steps and the current accuracy is around 90%. It can be improved further through block-wise input image, machine learning, and a higher version of the infrared camera. In addition, it will be attached to the stick for easy carrying and to use it more conveniently.

Development of Augmented Reality Based Electronic Circuit Education System (증강현실 기반 전자회로 교육 시스템 개발)

  • Oh, DoBong;Shim, SeungHwan;Choi, HanGo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.333-338
    • /
    • 2020
  • This paper proposes an augmented reality-based electronic circuit education system as a way for electronic circuit education, which is the basis of ICT convergence technology field. It consists of a hardware module that can identify the actual circuit and a mobile educational content that can check the current flow, input, output, and measured value by applying augmented reality technology. An experiment was conducted on image recognition, which is the main performance, for the purpose of stable operation of the system, and as the experimental method the recognition rate was measured by changing the distance between the hardware module and the mobile device to a certain interval. As a result of the experiment, the recognition rate was 100 percent at a distance of 25[Cm] or higher, and it was confirmed that the recognition rate decreased by 12% at a distance below 25[Cm], which can be said to be the effect of an error that results in image loss taken due to close distance. In the future, we plan to apply the education system presented in this paper to classes, which increases the efficiency of classes and improve students' interest and understanding of the subject.

Development of a Virtual Reality Glove Improvement Algorithm for Immersive Virtual Reality contents (몰입형 가상현실 콘텐츠를 위한 가상현실 글러브 개선 알고리즘 개발)

  • Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.807-812
    • /
    • 2021
  • In order to be able to interact with the user to experience it as if it were real in virtual reality contents, input/output devices that make them feel the five senses of humans are required . In virtual reality (VR), devices that stimulate sight and hearing are the most representative. For a more realistic experience, suits and gloves that stimulate the sense of touch have recently been released, but there are not many cases applied to actual contents due to the limitation of device . In this paper, we analyze a virtual reality glove that can detect hand movement and touch in a virtual world. Based on the analysis, we propose an algorithm that can sense the intensity of collision with a VR object by tactile sense by improving the UI/UX using the vibration of the feedback method used in the existing virtual reality glove. In addition, the system implemented by the algorithm is applied to an actual case.

A Development of an All-in-one Ironing System for All Style Pants (바지 형태에 구애받지 않는 융합 다림질 시스템 개발)

  • Kim, Keunsik;Kim, Jong-Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.172-179
    • /
    • 2022
  • Unlike other processes such as washing, the ironing process in the laundry process is difficult to standardize and thus relies on manual labor. Unlike upper garments, pants have pleats at the waist as well as a crease line below the waist, Therefore, two separate ironing devices have been developed and used. However, in this method, problems such as additional worker input, space loss, and wrinkling of pants occur due to manual movement between processes, Consequently, a pants ironing device that combines the two equipments is required. The all-in-one pants ironing system described in this paper automatically sequentially irons the upper part and side of the pants regardless of the length, shape, and upper pleats of the pants. It also performs a self-diagnosis function while displaying the ironing progress on the user's monitor. As a result of this study, it became possible to double the amount of ironing and reduce power consumption by more than 20% compared to the case of using two independent equipment.