• Title/Summary/Keyword: input/output measurement

Search Result 388, Processing Time 0.054 seconds

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF

Extension of Measurement Range of Gyro Sensor Data (누적형 자이로 센서 데이터의 최대측정영역 확장 방법)

  • Oh, Shi-Hwan;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.39-48
    • /
    • 2012
  • In case a measurement output of gyro sensor is an accumulated angle counts, it is usually provided as a binary bit counter which is allowed to roll-over at its maximum or minimum value. And it is a well known fact that the roll-over behavior restricts the measurement range of the processed sensor output below the actual measurable range of sensor hardware itself. In this study, a conventional sensor data processing method for a gyro with an accumulated angle output is introduced. And also, an improved method which can extend the processed output range over the conventional one is proposed. It is also derived that the increased range depends on the variation speed of a input signal. Finally, the derived equations and the performance of the proposed algorithm are verified using a computer simulation.

Review of SQUID Sensors for Measuring Magnetocardiography (심자도 측정을 위한 SQUID 센서 기술의 개발 현황)

  • Lee, Y.H.;Kim, J.M.;Yu, K.K.;Kim, K.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Measurement of magnetic signals generated from electric activity of myocardium provides useful information for the functional diagnosis of heart diseases. Key technical component of the magnetocardiography (MCG) technology is SQUID. To measure MCG signals with high signal-to-noise ratio, sensitive SQUID magnetic field sensors are needed. Present magnetic field sensors based on Nb SQUIDs have field sensitivity good enough to measure most of MCG signals. However, for accurate measurement of fine signal pattern or detection of local atrial fibrillation signals, we may need higher field sensitivity. In addition to field sensitivity, economic aspect of the SQUID system is also important. To simplify the SQUID readout electronics, the output voltage or flux-to-voltage transfer of SQUID should be large enough so that direct measurement of SQUID output can be done using room-temperature preamplifiers. Double relaxation oscillation SQUID (DROS), having about 10 times larger flux-to-voltage transfers than those of DC-SQUIDs, was shown to be a good choice to make the electronics compact. For effective cancellation of external noise inside a thin economic shielded room, first-order axial gradiometer with high balance, simple structure and long-baseline is needed. We developed a technology to make the axial gradiometer compact using direct bonding of superconductive wires between pickup coil and input coil. Conventional insert has mechanical support to hold the gradiometer array, and the dewar neck has equal diameter with the dewar bottom. Boiling of the liquid He can generate mechanical vibrations in the gradiometer array due to mechanical connection structure. Elimination of the mechanical support, and direct mounting of the gradiometer array into the dewar bottom can reduce the dewar neck diameter, resulting in the reduction of liquid He consumption.

Capacitive Voltage Divide for a Pulsed High-Voltage Measurement (펄스형 고전압 측정용 용량성 분압기)

  • Jang Sung-Duck;Son Yoon-Kyoo;Kwon Sei-Jin;Oh Jong-Seok;Cho Moo-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source are under operation for 2.5 GeV electron linear accelerator in Pohang Light Source (PLS) linac. The klystron-modulator system has an important role for the stable operation to improve an availability statistics of overall system performance of klystron-modulator system. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are demanded for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider (CVD), which divides input voltage as capacitance ratio, is intended for the measurement of a beam voltage of 400 kV generated from the klystron-modulator system. Main parameter to determine standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will be present and discuss the design concept and analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance effects and oil temperature variation.

Output characteristics and measurement of the gain coefficient of a pulsed Nd:YAG laser (펄스형 Nd:YAG 레이저의 출력특성과 이득계수 측정)

  • 박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.1
    • /
    • pp.53-57
    • /
    • 1999
  • We established the laser oscillator using Nd:YAG crystal grown at Ssang Yong company in Korea and investigated the characteristics of oscillation, Q-switching and wave front of output beam. We measured the single pass gain by controlling the threshold input energy with two output couplers of different output reflectances. Moreover, we compared the gain measured by different output couplers with the gain directly measured by the laser amplifier. The peak power of Q-switching, the pulse width, and the single pass gain coefficient at the threshold energy were 1.5 MW, 30ns, and 0.0958 cm-$^1$ respectively and they were compared with those of the commercial Nd:YAG crystal. Our crystal was proved to be as good as the commercial crystal.

  • PDF

Design of a New Harmonic Noise Frequency Filtering Down-Converter in InGaP/GaAs HBT Process

  • Wang, Cong;Yoon, Jae-Ho;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • An InGaP/GaAs MMIC LC VCO designed with Harmonic Noise Frequency Filtering(HNFF) technique is presented. In this VCO, internal inductance is found to lower the phase noise, based on an analytic understanding of phase noise. This VCO directly drives the on-chip double balanced mixer to convert RF carrier to IF frequency through local oscillator. Furthermore, final power performance is improved by output amplifier. This paper presents the design for a 1.721 GHz enhanced LC VCO, high power double balance mixer, and output amplifier that have been designed to optimize low phase noise and high output power. The presented asymmetric inductance tank(AIT) VCO exhibited a phase noise of -133.96 dBc/Hz at 1 MHz offset and a tuning range from 1.46 GHz to 1.721 GHz. In measurement, on-chip down-converter shows a third-order input intercept point(IIP3) of 12.55 dBm, a third-order output intercept point(OIP3) of 21.45 dBm, an RF return loss of -31 dB, and an IF return loss of -26 dB. The RF-IF isolation is -57 dB. Also, a conversion gain is 8.9 dB through output amplifier. The total on-chip down-converter is implanted in 2.56${\times}$1.07 mm$^2$ of chip area.

Double-Input Singe-Output Architecture of LNA and Correction Method of Phase Variation for OTM Satellite Communication System (OTM(On-The-Move) 위성 통신 시스템을 위한 저잡음 증폭기 출력채널 단일화 구조 및 위상보정 방안)

  • Kwon, Kun-Sup;Ryu, Heung-Gyoon;Heo, Jong-Wan;Hwang, Ki-Min;Jang, Myung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, a double-input single-output architecture of a LNA(Low Noise Amplifier) is presented to enable to be devised for light weight and small-sized OTM(On-The-Move) satellite communication system suitable to be mounted on vehicles. In spite of advantages of the double-input single-output architecture of a LNA such as reduction of the number of physical channels, it results in time-varying phase error between a fundamental mode path and a high-order mode path. This paper shows that the error can be corrected by adding pilot signals to the LNA and using signal processing, and also gives the measurement data to use the method mentioned above.

Indirect Cutting Force Estimation Using Artificial Neural Network (인공 신경망을 이용한 절삭력 간접 측정)

  • 최지현;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1054-1058
    • /
    • 1995
  • There have been many research works for the indirect cutting force measurement in machining process, which deal with the case of one-axis cutting process. In multi-axis cutting process, the main difficulties to estimate the cutting forces occur when the feed direction is reversed. This paper presents the indirect cutting force measurement method in contour NC milling processes by using current signals of servo motors. An artificial neural network (ANN) system are suggested. An artificial neural network(ANN) system is also implemented with a training set of experimental cutting data to measure cutting force indirectly. The input variables of the ANN system are the motor currents and the feedrates of x and y-axis servo motors, and output variable is the cutting force of each axis. A series of experimental works on the circular interpolated contour milling process with the path of a complete circle has been performed. It is concluded that by comparing the ANN system with a dynamometer measuring cutting force directil, the ANN system has a good performance.

  • PDF

디지탈 화상처리를 이용한 사출제품의 길이측정용 시각검사시스템 개발에 관한 연구

  • 김재열;박환규;오보석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.281-285
    • /
    • 1996
  • In this paper, I made visual inspection system using Vision Board and it is consist of an illuminator (a fluorescent lamp), image input device(CCD(Charge)Coupled Device) camera), image processing system(Vision Board(FARAMVB-02), image output device(videomonitor, printer), a measuring instrument(TELMN1000). Length measurement by visual inspection system is used 100mm gauge block instead of calculating distance between camera and object, it measured horizontal and vertical length factor from 400mm to 650mm by increasing 50mm. In this place, measured horizontal and vertical length factor made use of length measurement of a injection. A measuring instrument used to compare a measured length of a injection visual inspection system with it. In conclusion, length measurement of a injection compared a measuring instrument withvisual inspecion system using length factor of 100mm guage block. Maximum error of length compared two devices a measuring instrument with visual inspection system is 0.55mm. And operation program is made up Borland C++ 3.1. By changing, it is applied to various uses.

  • PDF

Time-domain Approaches for Input Disturbance Observer

  • Kim, Kyung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.22-25
    • /
    • 2005
  • In the paper, algorithms for disturbance observers are newly presented in the time-domain. Attention is paid to observing a ramp disturbance by introducing an integral term to the output equation of a constant disturbance observer. In order to reduce the sensitivity to the measurement noise, the disturbance observer is combined with the state observer. It will be shown that the estimation dynamics can be arbitrarily chosen by assigning the eigenvalues of a characteristic equation. Also, we provide the analysis of observer behaviors subject to non-ramp-style disturbances. Finally, we propose the generalized disturbance observer that accurately estimates disturbances of higher order in time series expansion.

  • PDF