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Abstract: In the paper, algorithms for disturbance observers are newly presented in the time-domain. Attention is paid

to observing a ramp disturbance by introducing an integral term to the output equation of a constant disturbance observer.

In order to reduce the sensitivity to the measurement noise, the disturbance observer is combined with the state observer. It

will be shown that the estimation dynamics can be arbitrarily chosen by assigning the eigenvalues of a characteristic equation.

Also, we provide the analysis of observer behaviors subject to non-ramp-style disturbances. Finally, we propose the generalized

disturbance observer that accurately estimates disturbances of higher order in time series expansion.
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1. Introduction
For past several decades, disturbance observation and rejec-

tion has been one of the most important topics in control

theory. Depending on the characteristics of disturbances,

different types of observers have been devised in literature.

For instance, the periodic disturbance with unknown (or,

known sometimes) frequencies can be identified by the adap-

tive algorithms [2]. In mechanical systems such as the beam-

pointing system, robot arm moving systems or traction sys-

tems, the friction force is the major hindrance for precision

control([7], [3], [4]).

In the paper, disturbance observers that will be derived in

time domain are of major concern. It is noted that the ad-

vantages of time-domain approaches for disturbance observer

are as follows.

• Visible transient behavior in time domain

• Easy implementation with digital signal processors

The system of concern in the paper is restricted to single-

input-single-output (SISO) systems that have an auxiliary

input disturbance. Even with the simplest description, the

SISO system may represent many of practical applications

such as the robot-arm control system, DC-motor control sys-

tem and the actuator control in optical data storage devices

([6], [5], [1] among many).

The basic idea of the paper starts from the friction observer

proposed in [7], which may be viewed as a constant distur-

bance observer. It is noted that the observer consists of a

dynamic state equation and a static output equation. An

interesting point is that the observer can be easily extended

for estimating the ramp disturbance by introducing one in-

tegral term in the output equation. In order to reduce the

noise effect, a state estimator is combined together with the

disturbance observer. Through the frequency domain anal-

ysis, we also show that the observer can be applied to the

non-ramp style disturbances. In the final section, a general-

ization of the approach is made for observing the n-th order

disturbance, with predetermined dynamics, in time series ex-

pansion. In addition, a method is introduced to reduce the

noise propagation in the disturbance estimate.
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2. Preliminaries
2.1. Friction observer

For readability of the manuscript, we revisit the work by

Friedland and Park [7] for estimating the magnitude of fric-

tion in a mechanical system

v̇ = a0x + a1v + bu− f · sign(v) (1)

where v, x, and u are the velocity, the position and the

control input, respectively, and, f is the constant Coulomb

friction. Then, using the estimator





f̂ = z − γvsign(v)

ż = γ
{

a0x + a1v + bu− f̂sign(v)
}

sign(v)

+γv d
dt

sign(v)

(2)

for a γ > 0, it was shown that the constant friction can be es-

timated with the asymptotically exponential stability. Here,

note that the nominal model is simply incorporated in the

dynamics for a state variable z. As a matter fact, we will use

the underlying structure in the friction observer for devising

algorithms for observing unknown input disturbances.

2.2. Constant disturbance observer

Consider the system

ẋ = f(x, u; t) + d(t), x(0) = xo (3)

where f(x, u; t) and xo are known and the state variable x is

supposed to be measured. It is assumed that the disturbance

is continuous and differentiable.

First, observe that the friction in (1) is constant when the

motion is kept in a direction. For example, in case of

sign(v) = −1, the observer (2) would be simplified as

{
f̂ = z + γv

ż = −γ
{

a0x + a1v + bu + f̂
} (4)

Based on the observation, we introduce a disturbance ob-

server in the following.

DOB0:

d̂ = z + γ0x (5)

ż = −γ0

{
f(x, u; t) + d̂

}
, z(0) = −γ0xo (6)
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where γ0 > 0 is a tuning parameter for estimation error

dynamics.

One may show that, for ε = d− d̂,

ε̇ = −γ0ε + ḋ. (7)

Then, it follows that

|ε(t)| ≤ e−γ0t · |ε(0)|+ 1

γ0
ρ(t) (8)

for an envelope function ρ(t) such that ρ(t) ≥ ḋ(t), ∀t ≥ 0.

It is noted that the estimation characteristics is asymptoti-

cally and exponentially stable for the initial error while there

remains steady state error depending on the envelope of the

time derivative of the disturbance. When the disturbance

is constant, the disturbance observer would exactly estimate

the disturbance in the steady state.

As a remark, the initial condition for the state variable z

is chosen to produce the initial estimation output as zero,

which eventually enhances the transient convergence at the

beginning phase. This will be shown by an example later on.

3. Disturbance observer for a ramp disturbance
3.1. An observer algorithm

In this section, we suggest a simple method to estimate the

disturbance having the characteristics

d(t) = d0 + d1t (9)

where di’s (i = 0, 1) are unknown but constant. To this end,

we present a disturbance observer as follows.

DOB1: Given scalars γ0 > 0 and γ1 > 0,

d̂(t) = z + γ0x + γ1

∫ t

0

{z + γ0x(τ)} dτ (10)

where the state variable z is defined by (6).

Note that (10) includes an integral term differently from (5)

while the state equation (6) is commonly used. To investi-

gate the estimation error dynamics, one may have

ε̇ = ḋ− ˙̂
d

= ḋ− ż − γ0ẋ− γ1(z + γ0x)

= ḋ− γ0ε− γ1(z + γ0x) (11)

Hence, through some manipulations, it follows that

ε̈ + γ0ε̇ + γ0γ1ε = d̈(t) (12)

Note that the estimation error would converge to zero with

the positive scalars γi’s when the disturbance is of ramp as

in (5). Also, the convergent dynamics can be assigned using

the eigenvalue assignment using the characteristic equation

s2 + γ0s + γ0γ1 = 0 (13)

Furthermore, the steady state error may be shown to be

|εss| ≤ 1

γ0γ1
sup
t≥0

|d̈(t)| (14)
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Fig. 1. Simulation results for Example 1. x(t) (left). d(t)

and d̂(t) (right).

Example 1: Given the system

ẋ = −2x + d(t), x(0) = 4 (15)

where d(t) = 1 + 0.5t, we have the observer as follows.

{
d̂ = z + γ0x + γ1

∫ t

0
(z + γ0x)dτ

ż = −γ0{−2x + d̂} (16)

for γ0 = 4 and γ1 = 1 that place the eigenvalues at {−2,−2}.
The simulation results are shown in Fig. 1. The estima-

tion performance of the observer above is denoted by DOB1,

which shows the asymptotic and exponential stability for

the ramp disturbance estimation. Here, it is noted that the

DOB0 denotes the estimate when γ1 = 0 instead of γ1 = 1,

which results in an observer for a contant disturbance treated

in Section 2. Observe that there remains the steady state er-

ror by DOB0. Now, to explain the effect of the initial state

z(0), let us set z(0) = 0 instead of choosing z(0) = −γ0x(0).

Then, in Fig. 2, one may observe the unsatisfactory transient

response at the beginning of estimation. This phenomenon

may severely distort the transient response whenever the dis-

turbance observer is turned on from being off.

3.2. Combination with state estimation

Now, let us denote that the measured state as

xm = x + m(t) (17)
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Fig. 2. Effect of the initial state variable z(0).

where m is the measurement noise. With the noisy measure-

ment, the disturbance estimate given by (from eqn. (10)):

d̂(t) = z + γ0xm + γ1

∫ t

0

{z + γ0xm(τ)} dτ (18)

would be corrupted by the noise because xm directly puts

through. To prevent this, we propose a disturbance observer

(DOB2):

d̂ = z + γ0x̂ + γ1

∫ t

0

{z + γ0xm(τ)} dτ (19)

where the state estimate x̂ and z are defined as

˙̂x = f(xm, u; t) + d̂ + Kf (xm − x̂), (20)

ż = −γ0

{
f(xm, u; t) + d̂

}
(21)

for x̂(0) = xm(0), z(0) = −γ0xm(0).

To investigate the stability of the disturbance and state ob-

server, let us introduce the variables

ε0 = x− x̂, ε1 = d− d̂ (22)

Then, it follows that

ε̇0 = −Kf ε0 + ε1, (23)

and,

ε̈1 = d̈ + n(m, ṁ)− γ0Kf ε̇0 − γ0γ1ε1. (24)

where n(m, ṁ) = γ0K
2
fm− γ0(Kf + γ1)h(m)− γ0(Kf +1)ṁ

for h , f(x, u; t) − f(xm, u; t). It is noted that effects of

the noise are lumped in the term n(n, ṁ), which becomes

less effective to the state error after the double intergation.

From these, the state and disturbance estimates are coupled

with the following dynamics:

d

dt




ε0

ε1

ε̇1


 =



−Kf 1 0

0 0 1

γ0K
2
f −γ0(Kf + γ1) 0







ε0

ε1

ε̇1


+h(t)

(25)

where h(t)T = [0, 0, d̈ + n(m, ṁ)]. Then, through manipu-

lations, the characteristic equations for the above system is

given by

s3 + Kfs2 + γ0(Kf + γ1)s + γ0γ1Kf = 0 (26)
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Fig. 3. Simulation results for Example 2. xm & x̂ (left).

d̂DOB1 & d̂DOB2 (right).

In fact, it may be shown that the eigenvalues of (26) can be

arbitrarily assigned based on the following rule




Kf = −(λ1 + λ2 + λ3)

γ0 = − (λ1+λ2)(λ2+λ3)(λ1+λ3)

(λ1+λ2+λ+3)2

γ1 = − λ1λ2λ3(λ1+λ2+λ3)
(λ1+λ2)(λ2+λ3)(λ1+λ3)

(27)

which places the eigenvalues at {λ1, λ2, λ3} for λi ∈ C .

Remark 1: As an extreme case, suppose that the state esti-

mation is sufficiently faster than the disturbance estimate so

that, from (23),

ε0 ≈ 1

Kf
ε1. (28)

Then, from (24), we have

ε̈1 + γ0ε̇1 + γ0γ1ε1 = d̈ (29)

which matches the dynamics of DOB1. This implies that the

dynamics of the disturbance and state observer approaches

to that of DOB1, as long as the state estimate is sufficiently

fast.

Example 2: For the same system in Example 1, we as-

sume a uniformly random noise such that |m(t)| ≤ 0.1 in

the measured state. For the values such that Kf = 9,

γ0 = 2.667 and γ1 = 1.125, which place the eigenvalues at

λi = −3 (i = 1, 2, 3), we simulate the performances of DOB1

and DOB2 in the presence of the measurement noise. The

design parameters for DOB1 are kept equal to those in Ex-

ample 1. As shown in Fig. 3, DOB2 provides the disturbance

estimate much less corrupted by the noise than DOB1 does.
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Table 1. Transfer function of estimation error to distur-

bance.

Observer Type DOB0 DOB1 DOB2

S(s)
[
, E(s)

D(s)

]
s

s+γ

(
s

s+γ

)2 (
s

s+γ

)2

· s+3γ
s+γ

3.3. Performance analysis in frequency domain

So far, we have addressed the observer performance in the

time-domain subject to a ramp disturbance. In this sec-

tion, however, we address the performance in the frequency

domain so as to envisage the observer characteristics in the

presence of non-ramp style disturbances such as periodic dis-

turbances.

For simplifying the analysis and, also, for convenience in

practice, suppose that we choose the parameters as, for

DOB1,

γ0 = 2γ, γ1 =
γ

2
(30)

for a γ > 0, which would result in the double eigenvalues at

s = −γ. And, for DOB0, let us choose as

γ0 = γ (31)

Then, the transfer functions of the estimation error to the

disturbance can be summarized as in Table 1. Assuming

that the cutoff frequency is set to 100 (Hz), the frequency

responses are plotted in Fig.4 in order to show the effective-

ness of the DOB’s. For the figure, we used γ = 2π × 100,

γ = 2π × 64.22, and γ = 2π × 165 for DOB0, DOB1 and

DOB2, respectively, to have the same cutoff frequency.

The figure implies that even disturbances of non-ramp style

can be estimated by the proposed observers as long as they

are sufficiently slow with respect to the bandwidth of ob-

servers. Moreover, DOB1 (as well as DOB2) that are capable

of estimating the ramp disturbance perfectly can further re-

duce the estimation error for the low frequency disturbance,

compared with the constant observer, DOB0. This feature is

expected to be useful for estimating the disturbance caused

by the eccentricity in optical data storage devices. It is noted

that the experimental feasibility has been shown with the

constant disturbance observer in [8] and [6].
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4. Concluding remarks
In the paper, we have proposed the input disturbance ob-

servers that can estimate higher order of disturbances than a

constant. The dynamic features of the proposed approaches

have been shown and proven by the examples and the anal-

ysis.

The proposed approaches are expected to be useful for solv-

ing practical issues such as the track-following problem in

optical storage devices. The experimental validation of the

proposed approaches remains as one of important topics for

further study.
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