• 제목/요약/키워드: inositol 1,4,5-trisphosphate receptor ($IP_3R$)

검색결과 7건 처리시간 0.021초

아데노바이러스를 이용한 성체 심실 근세포 이노시톨 1,4,5-삼인산 수용체 제 2 아형의 발현 억제 (Knock-down of Type 2 Inositol 1,4,5-Trisphosphate Receptors using Adenovirus in Adult Ventricular Myocytes)

  • 손민정;크리슈나 피 수베디;우선희
    • 약학회지
    • /
    • 제54권1호
    • /
    • pp.8-12
    • /
    • 2010
  • Inositol 1,4,5-trisphosphate ($IP_3$) receptor ($IP_3R$)-mediated signaling pathway is involved in many cellular processes including fertilization, apoptosis and neuronal function. Although cardiac myocytes express the $IP_3R$, its pathophysiological role has not been clearly understood because of limited selectivity of currently available pharmacological blockers. In the present study we constructed shRNA-expressing adenovirus to knock-down the type 2 $IP_3R$ ($IP_3R2$), a major subtype in cardiac ventricular myocytes, and demonstrated that the virus successfully eliminated the expression and localization of the $IP_3R2$. These results may provide a reliable tool for probing pathophysiological roles of the $IP_3R2$ in isolated intact cardiac myocytes.

이노시톨 삼인산 수용체와 미토콘드리아에 의한 심방 근세포 $Ca^{2+}$ 신호전달의 조절 (Regulation of Atrial $Ca^{2+}$ Signaling by Inositol 1,4,5-Trisphosphate Receptor and Mitochondria)

  • 이향진;라스클리만;마틴모라드;우선희
    • 약학회지
    • /
    • 제48권6호
    • /
    • pp.352-357
    • /
    • 2004
  • Atrial myocytes have two functionally separate groups of ryanodine receptors (RyRs): those at the periphery colocalized with L-type $Ca^{2+}$channels (DHPRS) and those a t the cell interior not associated with DHPRs. $Ca^{2+}$ current ($I_{ca}$) directly gates peripheral RyRs on action potential and the subsequent peripheral $Ca^{2+}$ release propagates into the center of atrial myocytes. The mechanisms that regulate the $Ca^{2+}$+ propagation wave remain Poorly understood. Using 2-D confocal$Ca^{2+}$ imaging, we examined the role of inositol 1,4,5-trisphosphate receptor (IP $_3R$) and mitochondria on ($I_{ca}$)- gated local $Ca^{2+}$ signaling in rat atrial myocytes. Blockade of IP $_3R$ by xestospongin C (XeC) partially suppressed the magnitudes of I ca-gated central and peripheral $Ca^{2+}$ releases with no effect on $I_{ca}$. Mitochondrial staining revealed that mitochondria were aligned with ${\thickapprox}2-{\mu}m$ separations in the entire cytoplasm of ventricular and atrial myocytes. Membrane depolarization induced rapid mitochondrial $Ca^{2+}$ rise and decay in the cell periphery with slower rise in the center, suggesting that mitochondria may immediately uptake cytosolic $Ca^{2+}$, released from the peripheral SR on depolarization, and re-release the $Ca^{2+}$ into the cytosol to activate neighboring central RyRs. Our data suggest that the activation of IP $_3R$ and mitochondrial $Ca^{2+}$ handing on action potential may serve as a cofactor for the $Ca^{2+}$ propagation from the DHPR-coupled RyRs to the DHPR-uncoupled RyRs with large gaps between them.

전단 자극에 의한 심방 근세포 칼슘 웨이브의 발생: Phospholipase C-이노시톨 1,4,5-삼인산 수용체 신호전달의 역할 (Activation of a Ca2+ wave by Shear Stress in Atrial Myocytes: Role of Phospholipase C-inositol 1,4,5-Trisphosphate Receptor Signaling)

  • 김준철;우선희
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.158-163
    • /
    • 2015
  • Cardiac myocytes are subjected to fluid shear stress during each contraction and relaxation. Under pathological conditions, such as valve disease, heart failure or hypertension, shear stress in cardiac chamber increases due to high blood volume and pressure. The shear stress induces proarrhythmic longitudinal global $Ca^{2+}$ waves in atrial myocytes. In the present study, we further explored underlying cellular mechanism for the shear stress-induced longitudinal global $Ca^{2+}$ wave in isolated rat atrial myocytes. A shear stress of ${\sim}16dyn/cm^2$ was applied onto entire single myocyte using pressurized fluid puffing. Confocal $Ca^{2+}$ imaging was performed to measure local and global $Ca^{2+}$ signals. Shear stress elicited longitudinally propagating global $Ca^{2+}$ wave (${\sim}80{\mu}m/s$). The occurrence of shear stress-induced atrial $Ca^{2+}$ wave was eliminated by the inhibition of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors ($IP_3Rs$). In addition, pretreatment of phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the generation of longitudinal $Ca^{2+}$ wave under shear stress. Our data suggest that shear-induced longitudinal $Ca^{2+}$ wave may be induced by $Ca^{2+}$-induced $Ca^{2+}$ release through the RyRs which is triggered by $PLC-IP_3R$ signaling in atrial myocytes.

Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca2+]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets

  • Lee, Dong-Ha;Kim, Hyun-Hong;Cho, Hyun-Jeong;Yu, Young-Bin;Kang, Hyo-Chan;Kim, Jong-Lae;Lee, Jong-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.223-231
    • /
    • 2014
  • In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its $IC_{50}$ value was $175{\mu}g/ml$. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated $[CA^{2+}]_i$ mobilization and thromboxane $A_2$ ($TXA_2$) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated $[CA^{2+}]_i$ level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor ($IP_3R$) phosphorylation. These results suggest that the inhibition of $[CA^{2+}]_i$ mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of $IP_3R$. CE-WIB801C suppressed $TXA_2$ production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and $TXA_2$ synthase (TXAS). These results suggest that the inhibition of $TXA_2$ production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent $CA^{2+}$-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.

The Inhibitory Effects of Glycyrrhiza uralensis on human Platelet Aggregation and Thrombus Formation

  • Seung Na Ko;Ji Won Son;Gyu Ri Kim;Min Seon Kim;Yea Jin Lee;Seung Ju Kim;Ji Hyeon Shin;Da In Jo;Woo Young Bok;Hye Gyo Oh;Hyuk-Woo Kwon
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.242-248
    • /
    • 2023
  • Platelets are activated at the sites of vascular injury by a number of molecules, including adenosine diphosphate, collagen and thrombin. The full platelet aggregation is absolutely essential for the normal hemostasis. Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and is known to have various effects such as antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. However, the platelet inhibitory effect of Glycyrrhiza glabra extract (GGE) has not been identified. In this study, we investigated if GGE inhibited platelet aggregation. We observed that GGE inhibited collagen-induced platelet aggregation, Ca2+ mobilization, and thromboxane A2 generation. In addition, GGE suppressed phosphorylation of phosphatidylinositol-3 kinase (PI3K), Akt and elevated phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R), vasodilator stimulated phosphoprotein (VASP). Taken together, GGE showed strong antiplatelet effects and may be used to block platelet-mediated cardiovascular diseases.

Anti-thrombotic effects of ginsenoside Rk3 by regulating cAMP and PI3K/MAPK pathway on human platelets

  • Hyuk-Woo Kwon ;Jung-Hae Shin ;Man Hee Rhee ;Chang-Eun Park ;Dong-Ha Lee
    • Journal of Ginseng Research
    • /
    • 제47권6호
    • /
    • pp.706-713
    • /
    • 2023
  • Background and objective: The ability to inhibit aggregation has been demonstrated with synthetically derived ginsenoside compounds G-Rp (1, 3, and 4) and ginsenosides naturally found in Panax ginseng 20(S)-Rg3, Rg6, F4, and Ro. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. Methodology: Our study focused to investigate the action of G-Rk3 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, dense granule secretion, and thromboxane B2 secretion. In addition, we checked the regulation of phosphorylation on PI3K/MAPK pathway, and thrombin-induced clot retraction was also observed in platelets rich plasma. Key Results: G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R). In the presence of G-Rk3, dense tubular system Ca2+ was inhibited, and platelet activity was lowered by inactivating the integrin αIIb/β3 and reducing the binding of fibrinogen. Furthermore, the effect of G-Rk3 extended to the inhibition of MAPK and PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules and reduced production of TXA2. Lastly, G-Rk3 inhibited platelet aggregation and thrombus formation via fibrin clot. Conclusions and implications: These results suggest that when dealing with cardiovascular diseases brought upon by faulty aggregation among platelets or through the formation of a thrombus, the G-Rk3 compound can play a role as an effective prophylactic or therapeutic agent.

U46619 유도의 사람 혈소판에서 cAMP 및 P I3K/Akt 경로의 조절을 통한 Ginsenoside Rk3의 응집억제 효과 (Ginsenoside Rk3 suppresses U46619-induced human platelets aggregation through regulation of cAMP and PI3K/Akt pathway )

  • 이동하
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.221-226
    • /
    • 2023
  • 혈소판의 적절한 활성화와 응집이 필요하지만 과도하거나 비정상적인 응집은 뇌졸중, 혈전증, 동맥경화증과 같은 심혈관 질환을 유발할 수 있다. 따라서 이러한 질병을 예방하고 치료하기 위해서는 혈소판 응집을 조절하거나 억제할 수 있는 물질을 찾는 것이 중요하다. 여러 연구에서 Panax 인삼의 특정 ginsenoside 화합물이 혈소판 응집을 억제할 수 있음이 알려져 있다. 이들 화합물 중 Panax ginseng의 Rk3 (G-Rk3)는 혈소판 응집 억제의 기전이 불확실 하기에 이를 밝히기 위한 연구가 필요하다. G-Rk3는 cAMP의 양을 강하게 증가시켰고 cAMP 의존성 kinase의 기질인 VASP 및 IP3R의 인산화를 유도했다. 또한, G-Rk3의 효과는 PI3K/Akt 인산화의 억제를 일으켜 세포 내 과립의 분비를 감소시켰다. 궁극적으로 G-Rk3는 혈소판 응집을 효과적으로 억제하였다. 따라서 우리는 과도한 혈소판 응집으로 인한 심혈관 질환의 예방 또는 치료제로서의 G-Rk3의 가능성을 제안한다.

  • PDF