Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.025

Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca2+]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets  

Lee, Dong-Ha (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University)
Kim, Hyun-Hong (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University)
Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
Yu, Young-Bin (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
Kang, Hyo-Chan (Department of Medical Laboratory Science, Dong-Eui Institute of Technology)
Kim, Jong-Lae (Bioscience & Biotechnology Team, Central Research Center, Whanin Pharm. Co., Ltd.)
Lee, Jong-Jin (Bioscience & Biotechnology Team, Central Research Center, Whanin Pharm. Co., Ltd.)
Park, Hwa-Jin (Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University)
Publication Information
Biomolecules & Therapeutics / v.22, no.3, 2014 , pp. 223-231 More about this Journal
Abstract
In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its $IC_{50}$ value was $175{\mu}g/ml$. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated $[CA^{2+}]_i$ mobilization and thromboxane $A_2$ ($TXA_2$) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated $[CA^{2+}]_i$ level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor ($IP_3R$) phosphorylation. These results suggest that the inhibition of $[CA^{2+}]_i$ mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of $IP_3R$. CE-WIB801C suppressed $TXA_2$ production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and $TXA_2$ synthase (TXAS). These results suggest that the inhibition of $TXA_2$ production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent $CA^{2+}$-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.
Keywords
CE-WIB801C; cAMP; $TXA_2$; $Ca^{2+}$; $IP_3R$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Halbrugge, M., Friedrich, C., Eigenthaler, M., Schanzenbacher, P. and Walter, U. (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J. Biol. Chem. 265, 3088-3093.
2 Haslam, R. J., Davidson, M. M., Desjardins, J. V. (1978) Inhibition of adenylate cyclase by adenosine analogues in preparations of broken and intact human platelets. Evidence for the unidirectional control of platelet function by cyclic AMP. Biochem. J. 176, 83-95.   DOI
3 Jang, E. K., Azzam, J. E., Dickinson, N. T., Davidson, M. M. and Haslam, R. J. (2002) Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprusside. Br. J. Haematol. 117, 664-675.   DOI   ScienceOn
4 Kaibuchi, K., Sano, K., Hoshijima, M., Takai, Y. and Nishizuka, Y. (1982) Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium 3, 323-335.   DOI   ScienceOn
5 Lee, D. H., Kim, H. H., Cho, H. J., Bae, J. S., Yu, Y. B. and Park, H. J. (2014) Antiplatelet effects of caffeic acid due to $Ca^{2+}$ mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylation. J. Atheroscler. Thromb. 21, 24-37.
6 Londos, C., Wolff, J. (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 74, 5482-5486.   DOI
7 Mauco, G., Fauvel, J., Chap, H., and Douste-Blazy, L., (1984) Studies on enzymes related to diacylglycerol production in activated platelets. II. Subcellular distribution, enzymatic properties and positional specificity of diacylglycerol- and monoacylglycerol-lipases. Biochim. Biophys. Acta 796, 169-177.   DOI
8 Menshikov, Myu., Ivanova, K., Schaefer, M., Drummer, C. and Gerzer, R. (1993) Influence of the cGMP analog 8-PCPT-cGMP on agonistinduced increases in cytosolic ionized $Ca^{2+}$ and on aggregation of human platelets. Eur. J. Pharmacol. 245, 281-284.   DOI   ScienceOn
9 Moriyama, T., Wada, K., Oki, M., Matsuura, T. and Kitom, M. (1994) The mechanism of arachidonic acid release in collagen-activated human platelets. Biosci. Biotechnol. Biochem. 58, 93-98.   DOI   ScienceOn
10 Barragan, P., Bouvier, J. L., Roquebert, P. O., Macaluso, G., Commeau, P., Comet, B., Lafont, A., Camoin, L., Walter, U. and Eigenthaler, M. (2003) Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter. Cardiovasc. Interv. 59, 295-302.   DOI   ScienceOn
11 Bell, R. L., Kennerly, D. A., Stanford, N. and Majerus, P. W. (1979) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. U.S.A. 76, 3238-3241.   DOI
12 Butt, E., Abel, K., Krieger, M., Palm, D., Hoppe, V., Hoppe, J. and Walter, U. (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269, 14509-14517.
13 Cavallini, L., Coassin, M., Borean, A. and Alexandre, A. (1996) Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phosphorylation. J. Biol. Chem. 271, 5545-5551.   DOI
14 Cho, H. J., Cho, J. Y., Rhee, M. H. and Park, H. J. (2007) Cordycepin (3'-deoxyadenosine) inhibits human platelet aggregation in a cyclic AMP- and cyclic GMP-dependent manner. Eur. J. Pharmacol. 558, 43-51.   DOI   ScienceOn
15 Cipollone, F., Patrignani, P., Greco, A., Panara, M. R., Padovano, R., Cuccurullo, F., Patrono, C., Rebuzzi, A. G., Liuzzo, G., Quaranta, G. and Maseri, A. (1997) Differential suppression of thromboxane biosynthesis by indobufen and aspirin in patients with unstable angina. Circulation 6, 1109-1116.
16 Nishikawa, M., Tanaka, T. and Hidaka, H. (1980) $Ca^{2+}$-calmodulin dependent phosphorylation and platelet secretion. Nature 287, 863-865.   DOI   ScienceOn
17 Cunningham, K. G., Hutchinson, S. A., Manson, W. and Spring, F. S. (1951) Cordycepin: A metabolic product from cultures Cordyceps militaris Link. Part I. Isolation and characterization. J. Chem. Soc. 2, 2299-2300.
18 Halbrugge, M. and Walter, U. (1989) Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur. J. Biochem. 185, 41-50.   DOI
19 Ng, T. B. and Wang, H. X. (2005) Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509-1519.   DOI   ScienceOn
20 Quinton, T. M. and Dean, W. L. (1992) Cyclic AMP-dependent phosphorylation of the inositol-1,4,5-trisphosphate receptor inhibits $Ca^{2+}$ release from platelet membranes. Biochem. Biophys. Res. Commun. 184, 893-899.   DOI   ScienceOn
21 Patrono, C. (1994) Aspirin as an antiplatelet drug. N. Engl. J. Med. 330, 1287-1294.   DOI   ScienceOn
22 Schaeffer, J. and Blaustein, M. P. (1989) Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium 10, 101-113.   DOI   ScienceOn
23 Schwartz, S. M., Heinmark, R. L. and Majesky, M. W. (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70, 1177-1209.
24 Schwarz, U. R., Walter, U. and Eigenthaler, M. (2001) Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62, 1153-1161.   DOI   ScienceOn
25 Ok, W. J., Cho, H. J., Kim, H. H., Lee, D. H., Kang, H. Y., Kwon, H. W., Rhee, M. H., Kim, M. and Park, H. J. (2012) Epigallocatechin-3- gallate has an anti-platelet effect in a cyclic AMP-dependent man ner. J. Atheroscler. Thromb. 19, 337-348.   DOI
26 Walter, U. and Gambaryan, S. (2009) cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb. Exp. Pharmacol. 191, 533-548.   DOI   ScienceOn
27 Wonerow, P., Obergfell, A., Wilde, J. I., Bobe, R., Asazuma, N., Brdicka, T., Leo, A., Schraven, B., Horejsi, V., Shattil, S. J. and Watson, S. P. (2002) Differential role of glycolipid-enriched membrane domains in glycoprotein VI- and integrin-mediated phospholipase Cgamma2 regulation in platelets. Biochem. J. 364, 755-765.   DOI
28 Yue, G. G., Lau, C. B., Fung, K. P., Leung, P. C. and Ko, W. H. (2008) Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J. Ethnopharmacol. 117, 92-101.   DOI   ScienceOn
29 Cho, H. J., Kang, H. J., Kim, Y. J., Lee, D. H., Kwon, H. W., Kim, Y. Y. and Park, H. J. (2012) Inhibition of platelet aggregation by chlorogenic acid via cAMP and cGMP-dependent manner. Blood Coagul. Fibrinolysis 23, 629-635.   DOI