• 제목/요약/키워드: inorganic-organic nano-hybrid

검색결과 59건 처리시간 0.028초

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications

  • Tran, Tai Duc;Kim, Moon Il
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.268-279
    • /
    • 2018
  • Flower-shaped organic-inorganic hybrid nanostructures, termed nanoflowers, have received considerable recent attention as they possess greatly enhanced activity, stability, durability, and even selectivity of entrapped organic biomolecules, which are much better than those from the conventional methods. They can be synthesized simply via co-incubation of organic and inorganic components in aqueous buffer at room temperature and yield hierarchical nanostructures with large surface-to-volume ratios, allowing for low-cost production by easy scale-up, as well as the high loading capacity of biomolecules without severe mass transfer limitations. Since a pioneering study reported on hybrid nanoflowers prepared with protein and copper sulfate, many other organic and inorganic components, which endow nanoflowers with diverse functionalities, have been employed. Thanks to these features, they have been applied in a diverse range of areas, including biosensors and biocatalysis. To highlight the progress of research on organic-inorganic hybrid nanoflowers, this review discusses their synthetic methods and mechanisms, structural and biological characteristics, as well as recent representative applications. Current challenges and future directions toward the design and development of multi-functional nanoflowers for their widespread utilization in biotechnology are also discussed.

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성 (Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane)

  • 나문경;안명상;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Nuclear Magnetic Relaxaon Study of the Organic-Inorganic Hybrid Systems (CnH2n+1NH3)2SnCl6

  • Lee, Kyu-Won;Lee, Cheol-Eui
    • Journal of Magnetics
    • /
    • 제10권2호
    • /
    • pp.63-65
    • /
    • 2005
  • The $^1H$ NMR spin-lattice relaxation in a series of the organic-inorganic hybrid systems $(C_nH_{2n+1}NH_3)_2SnCl_6$ (n = 8, 10, 12, 14) undergoing two successive phase transitions was studied. A discontinuity characteristic of a first order phase transition was observed at the high-temperature conformational transition. Besides, the spin-lattice relaxation rate below the conformational transition temperature was well fitted by four types of molecular motions, from which the chain-length dependence of the activation energies of the molecular groups was obtained.

유-무기 하이브리드 하드마스크 소재의 합성 및 식각 특성에 관한 연구 (Synthesis and Etch Characteristics of Organic-Inorganic Hybrid Hard-Mask Materials)

  • 유제정;황석호;김상범
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1993-1998
    • /
    • 2011
  • 반도체 산업은 지속적으로 비약적인 발전을 이루어내면서 점점 고집적회로를 제작하기 위하여 패턴의 미세화가 이루어지게 되었다. 현재 미세 나노패턴의 형성을 위하여 여러층의 하드마스크가 사용되고 있으며, 화학증기증착(CVD)공정을 이용하여 형성한다. 이에 본 연구에서는 스핀공정(spin-on process)이 가능한 유-무기 하이브리드 중합체를 이용한 단일층의 하드마스크를 제작하였는데, 하드마스크 내의 무기계 성분이 감광층 보다 쉽게 식각되는 반면에 하드마스크의 유기계 성분으로 인해 substrate층 보다 덜 식각되었다. 유-무기 하이브리드 중합체를 이용한 하드마스크막의 광학 및 표면 특성을 조사하였고, 감광층과 하드마스크막의 식각비를 비교하여 유-무기소재의 하이브리드중합체에 대한 미세패턴을 형성시킬 수 있는 하드마스크막으로써의 유용성을 확인하였다.

유무기 TiO2-SiO2 혼성코팅에 미치는 전구체 배합비율의 영향 (Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating)

  • 김동규;맹완영
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.271-280
    • /
    • 2016
  • When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.

폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성 (Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex)

  • 김동영;서준희;이병진;강경구;이창수
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.115-123
    • /
    • 2021
  • 본 연구는 무기 실리카 껍질(shell)과 유기 고분자 코어(core)로 구성된 매우 균일한 유-무기 복합체 입자 제조의 방법에 관한 것이다. 먼저, 미세유체 기술을 이용하여 균일한 크기를 지니는 유기 고분자 코어 입자를 제조하였다. 코어 입자의 제조 과정에서 코어 입자의 제조 과정에서 광 경화성 유기 물질이 포함된 분산상과 연속상의 유속을 독립적으로 제어함으로써 균일한 액적을 형성하였다. 액적이 형성됨과 동시에, 미세유체 채널의 말단에서 자외선 조사에 의해 액적이 광중합 되어 코어 입자로 형성된다. 더불어, 폴리알릴아민 하이드로클로라이드(polyallylamine hydrochloride, PAH)와 인산 이온(phosphate ion)으로 구성된 나노 복합체는 최적화된 pH 조건에서 수소결합과 정전기적 인력 같은 강력한 상호작용을 통해 코어 입자에 코팅된다. 폴리아민 나노 복합체에 존재하는 PAH 주쇄의 아민 그룹들은 규산(silicic acid)의 축합(condensation) 반응을 촉매하여, 코어 입자 표면의 실리카 나노입자 성장을 시킬 수 있었다. 따라서, 본 방법을 통해 유기 코어에 무기 실리카 나노입자로 코팅된 유-무기 복합체 입자를 제조할 수 있었다. 최종적으로, 본 연구에서 제시한 방법은 보다 온화하며 환경친화적인 조건 하에서 단시간 내에 유-무기 복합체 입자를 합성할 수 있으며, 다양한 모양과 크기를 갖는 코어 입자에 적용되어 넓게 활용될 수 있다.

글로벌 배선 적용을 위한 UV 패턴성과 UV 경화성을 가진 폴리실록산 (Organic-inorganic Hybrid Dielectric with UV Patterning and UV Curing for Global Interconnect Applications)

  • 송창민;박해성;서한결;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.1-7
    • /
    • 2018
  • As the performance and density of IC (integrated circuit) devices increase, power and signal integrities in the global interconnects of advanced packaging technologies are becoming more difficult. Thus, the global interconnect technologies should be designed to accommodate increased input/output (I/O) counts, improved power grid network integrity, reduced RC delay, and improved electrical crosstalk stability. This requirement resulted in the fine-pitch interconnects with a low-k dielectric in 3D packaging or wafer level packaging structure. This paper reviews an organic-inorganic hybrid material as a potential dielectric candidate for the global interconnects. An organic-inorganic hybrid material called polysiloxane can provide spin process without high temperature curing, an excellent dielectric constant, and good mechanical properties.