• Title/Summary/Keyword: inorganic nutrients

Search Result 391, Processing Time 0.028 seconds

A Study on the Plant Planning in Landscape Space Considering the Characteristics of the Gender Determination of Pine Tree (소나무 성 결정 요인의 특성을 고려한 조경공간 식재계획)

  • Lee, Chang-Hun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • This study analyzed the components contained in the pine needles of first and second-year-olds to analyze the factors that the in vivo content of inorganic elements affects the sex determination of pine trees. In response, the plan for pine tree plant and maintenance was intended to be presented in consideration of the reproductive environment and physiological characteristics. The results are as follows. First, last year, when there were many encyclopedias, the analyzed N(%) content was found to be high. The nitrogen content of the previous year's soil was found to affect the production of the spheres the following year. This is believed to be possible to reduce the rate of Pine pollen produced in the new plant in the following year through a dispute over quality consumption in the spring of the previous year. Second, the weapons elements involved in the Pine cones and the generation of the Pine pollen in the new plant appeared to be P(%), K(%), Ca(%), and Fe(%). However, the nutrients from the previous year's leaves of Ca(%) and Fe(%) were found to have a low influence on the sex determination of first-year pine trees. Because Ca(%) and Fe(%) are not able to move nutrients accumulated in aging organs due to the nature of the components, feeding nutrients in the fall when the growth of the previous year's branches is reduced is expected to affect oral generation. Third, pine trees are extremely positive and Pine pollen is related to the time of the northeast wind. Therefore, it is believed that it would be good to be located in the northern direction, where the sunlight is good, in an outdoor space. In addition, it is important to use vaginal consumer products in spring and carry out a quarrel involving Mg and Fe during fall to reduce the effect of the Pine pollen, which is an outdoor plant. This is an important part of maintaining and managing pine trees in outdoor spaces as well as the sex determination of pine trees. This study suggested that plant planning, which derives the correlation between pine inorganic element content on sexual determination and takes into account the physiological characteristics of pine trees, is an important issue in the creation of outdoor space. Follow-up research on other factors affecting pine tree sex determination is expected.

Effects of Different Sources of Dietary Chromium and Copper on Growth Performances, Nutrients Digestibility, Fecal Cr, Cu and Zn Excretion in Growing Pigs (크롬과 구리의 형태별 병용급여가 육성돈의 육성성적, 소화율 및 분의 Cr, Cu, Zn 배출량에 미치는 영향 미치는 영향)

  • Park, Jeoung-Keum;Kim, Jin-Woong;Yoo, Young-Beom;Lee, Jun-Yeop;Ohh, Sang-Jip
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • This study was carried out to evaluate effects of either organic or inorganic sources of both chromium and copper on growth performances, nutrients digestibility and fecal Cr, Cu, and Zn excretion in growing pigs. A total of 36 growing pigs((Landrace×Yorkshire)×Duroc, weighing 61.2kg in average) were allotted to 4 treatments with 3 replicates and 3 pigs per replicate. Four treatments were designated by supplemental sources of both chromium and copper as follows: ①200ppb Cr as Cr-methionine chelate(CrMet) and 200ppm Cuas copper methionine chelate(CuMet), ②200ppb Cr as CrMet and 200ppm Cu as copper sulfate(CuSO4), ③200ppb Cr as chromium chloride(CrCl3) and 200ppm Cu as CuMet, ④200ppb Cr as CrCl3 and 200ppm Cu as CuSO4. Growth performance was highest(p<0.05) in CrMet and CuMet supplemented diet treatment. Nutrients digestibility of diets was lowest(p<0.05) in CrMet and CuSO4 supplemented diet treatment, and highest(p<0.05) in CrMet and CuMet supplemented diet treatment. Fecal copper, zinc and chromium excretion was highest(p<0.05) in CrCl3 and CuSO4 supplementation treatment and lowest(p<0.05) in CrMet and CuMet supplementation treatment. This study showed a relatively high degree of utilization of Cr and Cu as well as Zn by supplementation of CrMet and CuMet compared with those of the inorganic sources.

Variations in Nutrients & $CO_2$ Uptake Rates of Porphyra yezoensis Ueda and a Simple Evaluation of in situ N & C Demand Rates at Aquaculture Farms in South Korea (방사무늬김(Porphyra yezoensis Ueda)의 영양염과 이산화탄소 흡수율 정밀 평가를 통한 양식해역의 질소와 탄소 요구량 산정)

  • Shim, JeongHee;Hwang, Jae Ran;Lee, Sang Yong;Kwon, Jung-No
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2014
  • In order to understand the contribution of seaweed aquaculture to nutrients and carbon cycles in coastal environments, we measured the nutrients & carbon uptake rates of Porphyra yezoensis Ueda sampled at Nakdong-River Estuary using a chamber incubation method from November 2011 to April 2012. It was observed that the production rate of dissolved oxygen by P. yezoensis (n=30~40) was about $68.8{\pm}46.0{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and uptake rate of nitrate, phosphate and dissolved inorganic carbon (DIC) was found to be $2.5{\pm}1.8{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, $0.18{\pm}0.11{\mu}mol\;{g_{FW}}^{-1}h^{-1}$ and $87.1{\pm}57.3{\mu}mol\;{g_{FW}}^{-1}h^{-1}$, respectively. There was a positive linear correlation existed between the production rate of dissolved oxygen and the consumption rates of nitrate, phosphate and DIC, respectively, suggesting that these factors may serve as good indicators of P. yezoensis photosynthesis. Further, there was a negative logarithmic relationship between fresh weight of thallus and uptake rates of nutrients and $CO_2$, which suggested that younger specimens (0.1~0.3 g) were much more efficient at nutrients and $CO_2$ uptake than old specimens. It means that the early culturing stage than harvesting season might have more possibilities to be developed chlorosis by high rates of nitrogen uptake. However, N & C demanding rates of Busan and Jeollabuk-do, calculated by monthly mass production and culturing area, were much higher than those of Jeollanam-do, the highest harvesting area in Korea. Chlorosis events at Jeollabuk-do recently might have developed by the reason that heavily culture in narrow area and insufficient nutrients in maximum yield season (Dec.~Jan.) due mostly to shortage of land discharge and weak water circulation. The annual DIC uptake by P. yezoensis in Nakdong-River Estuary was estimated about $5.6{\times}10^3\;CO_2$ ton, which was about 0.03% of annual carbon dioxide emission of Busan City. Taken together, we suggest more research would be helpful to gain deep insight to evaluate the roles of seaweed aquaculture to the coastal nutrients cycles and global carbon cycle.

Development and Operation of Canal-type CROM for Water Quality Improvement of Eutrophic Reservoir: Mussel Density Effect (부영양 저수지의 수질개선을 위한 수로형 CROM 개발 및 운영: 패류밀도의 효과)

  • Kim, Baik-Ho;Min, Han-Na;Lee, Song-Hee;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.369-376
    • /
    • 2010
  • A novel or canal-type continuous removal of organic matter (C-CROM) with combined freshwater bivalves (Unio douglasiae and Anodonta woodiana) was developed to improve the water quality (IWQ) of eutrophic reservoirs. The first experiment was performed for 12 days to measure the IWQ using 256 individuals of combined bivalves (ca. 7:3), at the same density that distributed in the collection stream. The second experiment was conducted to evaluate the efficacy of IWQ with the addition of each 30% of two mussels for 14 days. Results indicated that a novel C-CROM significantly decreased suspended solids, chlorophyll-$\alpha$, transparency, total nitrogen and phosphorus, and increased ammonium and biodeposition (t-test, P<0.001 for all), while other dissolved inorganic nutrients such as $NO_2$, $NO_3$, and SRP did not change (t-test, P>0.5). Daily IWQ performances of C-CROM with combined mussels was about two times higher to the previous studies using single species where less suspended inorganic nutrients were released except for ammonia. Collectively, a C-CROM is more strategic to the water quality improvement of eutrophic lake.

Characteristics of Heterotrophic Bacterial Population in the Artificial Lake Geumgang Near Estuary Barrage (금강 하구둑 인근에서 미생물군집의 특성)

  • Bae, Myoung-Sook;Park, Suhk-Hwan;Choi, Gang-Guk;Lee, Keun-Kwang;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2005
  • The monthly variations of physico-chemical and microbiological water quality were investigate in the artificial Lake Geumgang near estuary barrage. Sixty heterotrophic bacteria were isolated and identified by amplification and sequencing of 16S rDNA. Water temperature, pH, and inorganic nutrients($NH_4$-N, $NO_2$-N, $NO_3$-N, $PO_4$-P) were measured. Concentrations of DO, BOD, and inorganic nutrients were lower than in the middle-stream of Geum river The population densities of heterotrophic bacteria and total coliforms varied from $4.1{\pm}1.0\times10^2$ to $6.7{\pm}1.1{\times}10^3\;cfu\;ml^{-1}$, and 0 to $2.3{\pm}0.6{\times}10^2\;cfu\;ml^{-1}$, respectively. Among the measured numbers of physiological groups of bacteria, cellulolytic bacteria showed higher population densities than those of other physiological groups. Bacterial community structure was analysed based on 16S rDNA partial sequencing. Among 60 isolates, dominant genus was Pseudomones (20 strains).

Temporal and Spatial Evaluation of Water Pollution Characteristics in Gohyeon Stream and Its Tributaries (고현천 및 유입지류의 수질오염 특성의 시·공간적 평가)

  • Kim, Sung-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 2012
  • BACKGROUND: Gohyeon Stream is the municipal eco-stream of 7.1km in total length which flows through the downtown area of Gohyeon in Geoje city, rising from the watershed of Mundong Water Fall. Gohyeon district in Geoje city has been a rapid growing area centering in Geoje city and then experienced an rapid increase in population. Large amounts of sewage pollutants have been spewed into Gohyeon Stream from its tributaries, due to the lack of sewer system. Gohyeon Stream is laced with unhealthy levels of fecal coliform (FC). Restoration of water quality in Gohyeon Stream is no less inevitable in behalf of its ecosystem and the citizen. In this study, the water quality of Gohyeon Stream and its tributaries was examined temporally and spatially, and their relationships were comparatively analyzed to give useful basic data applying to a restoration project of the water quality of Gohyeon Stream. METHODS AND RESULTS: The samples ware taken at 20 points in Gohyeon Stream and 19 points in its tributaries during the rainy and dry seasons, respectively, and examined on the parameters of pH, temperature, salinity, dissolved oxygen (DO), suspended solid (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN; $NH_3$-N, $NO_3$-N, $NO_2$-N), disolved inorganic phosphorus (DIP; $PO_4$-P) and FC. The data were analyzed using a comparative analysis and Pearson's correlation analysis among the parameters. During the rainy season, the concentration of SS was high in the upper region of Gohyeon Stream, and the concentrations of COD, DIN and DIP were low in the upper region and high in the middle and lower regions. During the dry season, the concentration of SS was low and the concentrations of COD, DIN, DIP and FC were high in all regions. The Pearson's correlation analyses showed that the relationships between DO and FC, COD and DIP, and DIN and FC during the rainy season as well as between DO and DIN, SS and FC, COD and DIP, and DIN and DIP during the dry season were significant. CONCLUSION: During the rainy season, the upper region of Gohyeon Stream flowed the high level of SS, the middle region the high level of nutrients due to an agricultural run-off, and the lower region the high level of nutrients due to a sewage inflow. During the dry season, the water quality of Gohyeon Stream was directly and sensitively influenced on the inflow of sewage from the tributaries.

Evaluation of Algal Growth Limiting Factor in the Nakdong River by MBOD Method (MBOD법에 의한 낙동강의 조류증식 제한인자 추정)

  • Song, Kyo-Ook;Seo, In-Suk;Shin, Sung-Kyo;Lee, Suk-Mo;Park, Chung-Kil
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.83-83
    • /
    • 1995
  • The increase of population and industrial activities had brought into eutrophication in the Nakdong river. A remarkable acceleration of eutrophication brought about serious problems for water supply. Therefore, for the purpose of conservation of water quality in the Nakdong river it is necessary to control nutrients. MBOD method was use to evaluate algal growth limiting factor and algal growth potential in the Nakdong river from June to August 1994. The modified biochemical oxygen demand(MBOD) depends on the amount of available inorganic nutrient and organic substrate during 5 day incubation in the dark at 20$^{circ}C$. The MBOD assay depends on inorganic nutrients such as P and N as well as reduced carbon and called the MBOD, the MBOD-P, and the MBOD-N, respectively. The results of bioassay by MBOD(Modified BOD) method showed that the MBOD, MBOD-P and MBOD-N value were found to be in the ranges of 3.8∼96.0 mg$O_2$/l, 5.6∼94.0 mg$O_2$/l and 42.0∼220 mg$O_2$/l, respectively. And the the bioassay value was found to be the highest in Koryong area and the lowest in Waekwan area throughout the Nakdong river. The variations of MBOD-P and MBOD-N value showed similar tendencies to the variations of phosphorus and nitrogen value, respectively. By MBOD method, the relationships of MBOD, MBOD-P and MBOD-N value were MBOD ≒ MBOD-P 《 MBOD-N. The MBOD value was nearly equal to the MBOD-P value, and the MBOD-N value was 3 to 20 times more than the MBOD-P value, approximately. Therefore, in the Nakdong river, phosphorus was the limiting factor for algal growth during summer season. The algal growth potential as the concentration of chlorophyll-a in the summer was maximum 5 times more than standing crop as it.

Temporal Variations of Submarine Groundwater Discharge (SGD) and SGD-driven Nutrient Inputs in the Coastal Ocean of Jeju Island (제주도 연안에서 해저 지하수 및 지하수 기원 영양염류 유입량의 시간적 변화)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.252-261
    • /
    • 2012
  • To determine the temporal variations of submarine groundwater discharge (SGD) and SGD-driven nutrients inputs, we measured the seepage rate and the nutrient concentrations of pore water/groundwater in Bangdu Bay of Jeju Island at two and three month intervals from September 2009 to September 2010. The seepage rate of groundwater ranged from 0 to 330 cm/day (average ~170 cm/day) during the five sampling periods, which increased sharply from high tide to low tide due to changes in hydraulic pressure gradient between water table in land and water sea level in the coastal ocean by the tidal cycles. The submarine inputs of groundwater were also relatively higher in summer than in winter. The nutrient fluxes from SGD were about 90~100%, 70~95%, and 65~100% of the total input (except from open ocean waters) for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively, potentially supporting about 0.9~33 g $carbon/m^2/day$ of new primary production in Baugdu Bay. Thus, our study suggests that SGD-driven nutrients may play an important role in the eutrophication and biological production in the coastal ocean of Jeju Island.

Utilization of Industrial Wastes as Fertilizer (산업폐기물(産業廢棄物)의 비료화(肥料化))

  • Shin, Jae-Sung;Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.68-79
    • /
    • 1984
  • An increased population and rapidly expanding industrial development have led to enormous amounts of various domestic and industrial wastes. The proper disposal of ever-increasing wastes is a growing global problem. Land treatment is one of the rational approaches that are environmentally safe and economically practical. It has long been practised in many sites. Recycling of industrial wastes on agricultural land can provide better possible means for maintaining environmental quality and utilizing waste-resources. Even though industrial wastes are beneficial as soil amendment and fertilizer, they have some limitation on land application because of wide variability as well as physicochemical problem in their composition. A direct application of solid and liquid wastes on land is being practised in Korea and some experimental results are presented. The direct application of fermentation waste on rice resulted in a 6 percent yield increase. Another organic residue from glutamic acid fermentation is widely used not only as a direct application as a liquid fertilizer but also for a raw material of organic compound fertilizer. These wastes are much promising as sources of plant nutrients, since they have large amounts of nutrients, especially nitrogen with few toxic metals. On the other hand, fertilizers developed from inorganic industrial wastes include calcium silicate, calcium sulfate and ammonium sulfate. The calcium silicate fertilizer simply produced from slag, by-product of iron and steel manufacturing plant is one of the most successful example of the conversion of wastes to fertilizer and slag production capacity totals to over three million MT/year. About 200,000 MT of calcium silicate fertilizer is currently applied in the paddy rice every year. Calcium sulfate, a waste from the wet phosphoric acid process is to some extent used as a filler of compound fertilizers but quite large quantites are directly applied for the reclamation of tidal flat.

  • PDF

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.