• Title/Summary/Keyword: inorganic carbon

Search Result 597, Processing Time 0.022 seconds

Lipid Production Characteristics of the Basophilic Blue-Green Algae Arthrospira platensis Depending on pH for Alkaline Wastewater Treatment (알칼리성 폐수처리를 위한 호염기성 남조류 Arthrospira platensis의 pH에 따른 지질생성 특성)

  • Su-Hyeon Lee;Su-min Kwon;Sun-Jin Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.433-438
    • /
    • 2023
  • This study investigated the growth and metabolic characteristics of Arthrospira platensis (A. platensis) according to pH, which has an alkaline optimal pH. The intake of inorganic carbon was expected to be the highest at the optimum pH 9, but it was different from the expectation, so the cause of the excessive intake of inorganic carbon at pH 7 was investigated. We tried to verify the triacylglycerol (TAG) synthesis metabolic mechanism because it was assumedthat the inorganic carbon intake of A. platensis according to pH is closely related to lipid production inside the cell. To verify this, the effects of pH on inorganic carbon intake were examined through lipid analysis inthe cell of A. platensis according to pH. As a result, in the case of the effect of inorganic carbon intake of A. platensis according to pH on TAG content, pH 9 and pH 11 showed no significant difference in TAG content, but at pH 7, it was two times higher compared to pH 9 and pH 11. It was assumed that the reason why A. platensis excessively consumed inorganic carbon at pH 7 was because itincreased the TAG content in proportion to the intake of inorganic carbon to protect cells from external pH stress. In addition, it is considered that the TAG content produced in proportion to the intake of inorganic carbon is because acetyl-CoA produced in the Calvin cycle is required for the synthesis of TAG.

The Responses of a Small Lake Watershed to an Inorganic Carbon Cycle (무기탄소 순환에 대한 소규모 호수 유역의 반응)

  • Cho, Youngil
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.610-617
    • /
    • 2013
  • Investigating the budgets of alkalinity and dissolved inorganic carbon (DIC) in lake water systems is significant for the examination of the behavior of a lake as a sink or a source with respect to the circulation of inorganic carbon chemistry. Budgets of total alkalinity ($Alk_T$) and DIC in Onondaga Lake, which was polluted by chronic calcium (Ca) loading in spite of the closure of soda ash ($Na_2CO_3$) facility, were determined by the analyses of inorganic carbon chemistry in tributary stream channels linked to the lake. AlkT and DIC fluxes of Onondaga Creek and Ninemile Creek occupied 65% and 54%, respectively, as larger tributary streams in comparison with other tributaries as well as different input sources. Budget calculations indicate that 18% of AlkT and 11% of DIC inputs to Onondaga Lake, respectively, remained immobilized in the Lake. This suggests that Ca chronically leached had been precipitated with inorganic carbon or remineralized by secondary mineral formation during the experimental period. In this study, the assumed mass balance calculation in Onondaga Lake with tributary streams resulted in exhibiting that the lake played a role of the sink for the inorganic carbon cycle.

Soil Organic Carbon Determination for Calcareous Soils (석회암 유래 토양의 토양유기탄소 분석법 연구)

  • Jung, Won-Kyo;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.396-402
    • /
    • 2006
  • Soil organic carbon has long been considered as the most critical factor to evaluate the soil quality, fertility, and fertilizer prescription. In addition, soil organic carbon may impact on greenhouse gas effects and global warming. Because of that, the management of soil organic carbon is increasingly important not only for improving soil quality but also for managing soil as a greenhouse gas source. Both wet and dry combustion have been used to determine soil organic carbon. Many benefits, such as automation and less labor, could the dry combustion method become more popular. Inorganic form of carbon could overestimate soil organic carbon when the dry combustion method was applied. Determination of soil inorganic carbon may contribute to the improved accuracy of soil organic carbon analysis using dry combustion method. Objectives of this research were 1) to develop soil inorganic carbon determination method using modified digital pressure calcimeter and 2) to evaluate soil organic carbon from calcareous soils using the dry and wet combustion method. Results showed that the significant linear relationship was found between soil inorganic carbon content and pressure calcimeter output. Inorganic carbon ranged from 22% to 28% of total carbon in the calcareous soil samples. Soil organic carbon content by dry combustion for calcareous soil was determined by subtracting inorganic carbon measured by the digital pressure calcimeter from total carbon. Soil organic carbon determined by dry combustion method was significantly correlated with that by wet combustion method. In conclusion, the digital pressure calcimeter may use to improve soil organic carbon determination for the calcareous soils by subtracting of soil inorganic carbon from total carbon determined by dry combustion method.

Development of Carbon Nanotubes and Polymer Composites Therefrom

  • Jain, P.K.;Mahajan, Y.R.;Sundararajan, G.;Okotrub, A.V.;Yudanov, N.F.;Romanenko, A.I.
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.142-145
    • /
    • 2002
  • Multiwall carbon nanotubes (MWNT) were produced using the arc-discharge graphite evaporation technique. Composite films were developed using MWNT dispersed in polystirol polymer. In the present work, various properties of the polymeric thin film containing carbon nanotubes were investigated by optical absorption, electrical resistivity and the same have been discussed.

  • PDF

Properties of Silicon Carbide-Carbon Fiber Composites Prepared by Infiltrating Porous Carbon Fiber Composites with Liquid Silicon

  • Lee, Jae-Chun;Park, Min-Jin;Shin, Kyung-Sook;Lee, Jun-Seok;Kim, Byung-Gyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.229-234
    • /
    • 1997
  • Silicon carbide-carbon fiber composites have been prepared by partially Infiltrating porous carbon fiber composites with liquid silicon at a reaction temperature of $1670^{\circ}C$. Reaction between molten silicon and the fiber preform yielded silicon carbide-carbon fiber composites composed of aggregates of loosely bonded SiC crystallites of about 10$\mu\textrm{m}$ in size and preserved the appearance of a fiber. In addition, the SiC/C fiber composites had carbon fibers coated with a dense layer consisted of SiC particles of sizes smaller than 1$\mu\textrm{m}$. The physical and mechanical properties of SiC/C fiber composites were discussed in terms of infiltrated pore volume fraction of carbon preform occupied by liquid silicon at the beginning of reaction. Lower bending strength of the SiC/C fiber composites which had a heterogeneous structure in nature, was attributed to the disruption of geometric configuration of the original carbon fiber preform and the formation of the fibrous aggregates of the loosely bonded coarse SiC particles produced by solution-precipitation mechanism.

  • PDF

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

Effects of nutrient and inorganic carbon on single cell formation of Pediastrum duplex (Pediastrum duplex의 single cell 형성에 미치는 영양염류 및 무기탄소의 영향)

  • Cho, Jae-Hyung;Noh, Kyung-Ho;Park, Kyu-Hyun;Jang, Jung-Seok;Nam, Gui-Sook;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.153-158
    • /
    • 2018
  • In this study, effects of nutrient and inorganic carbon on single cell emergence during the cultivation of microalgae were observed using colonial green algae, Pediastrum duplex. The concentration of inorganic carbon had significant effect on single cell emergence and its growth, but nitrogen and phosphorus concentration showed minor effects. According to P. duplex cultivation experiment, single cell started to be emerged around 500~750 mg-C/L of inorganic carbon concentration and it was bloomed dramatically at the higher values. And growth of P. duplex was started to be surpressed at the single cell formation concentration. From the results, it could be said that when we operate the microalgae systems for cultivation/harvesting or wastewater treatment, in order to avoid single cell formation, inorganic carbon should be maintained to the proper level.

A study on th reaction between silicon in melt and carbon (용융상태에서의 silicon과 carbon의 반응에 관한 연구)

  • M.J. Lee;B.J. Kim;S.M. Kang;J.K. Choi;B.S. Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.336-346
    • /
    • 1994
  • We studied the reaction between silicon and carbon. Silicon granules and silicon with 0.2 wt% carbon powders were prepared for sample and then they were heated up to the $1450^{\circ}C, 1550^{\circ}C, 1650^{\circ}C, 1700^{\circ}C$ and were dwelled 1 hr and 4 hrs, respectively. we studied the change of morphologies of molten silicon and the formation of SiC following the reaction withcarbon using optical microscope, SEM, and XRD. Above the melting point of silicon, oxygens are precipitated during the decomposition of quartz used crucible. SiO formed from the reaction between molten silicon and precipitated oxygen evaporated and made the surface defects. SiC were formed with the reaction between the unreacted carbon and molten silicon. Polytype of the SiC formed at the solidification interface was ${\alpha}-SiC$.

  • PDF

Effect of pH and Temperature on the Electrochemical Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase (일산화탄소탈수소화효소를 이용한 이산화탄소의 전기화학적 환원에 미치는 pH와 온도의 영향)

  • Shin, Jun-Won;Kim, You-Sung;Lee, Sang-Hee;Lee, Sang-Phil;Lee, Ho-Jun;Lim, Mi-Ran;Song, Ji-Eun;Shin, Woon-Sup
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.265-269
    • /
    • 2007
  • The effects of experimental variables for the electrochemical reduction of carbon dioxide by Carbon Monoxide Dehydrogenase (CODH) were investigated. It shows the pH optimum at 6.3 where the feasibility of electro-chemical reduction and the stability of CODH compromise each other. The optimum temperature for the reduction was at $60^{\circ}C$ where the enzyme shows the optimum activity although the solubility of carbon dioxide decreases as increasing temperature.

Carbon-allotropes: synthesis methods, applications and future perspectives

  • Karthik, P.S.;Himaja, A.L.;Singh, Surya Prakash
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.219-237
    • /
    • 2014
  • The element carbon has been used as a source of energy for the past few hundred years, and now in this era of technology, carbon has played a significant and very prominent role in almost all fields of science and technology. So as an honour to this marvellous element, we humans should know about its various forms of existence. In this review article, we shed light on all possible carbon-allotropes; similarities in their synthesis techniques and the starting materials; their wide range of possible availability; and finally, future perspectives and applications. A brief introduction is given on the types, structures, and shapes of the allotropes of carbon for a better understanding.