Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.4.219

Carbon-allotropes: synthesis methods, applications and future perspectives  

Karthik, P.S. (Inorganic and Physical Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology)
Himaja, A.L. (Inorganic and Physical Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology)
Singh, Surya Prakash (Inorganic and Physical Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology)
Publication Information
Carbon letters / v.15, no.4, 2014 , pp. 219-237 More about this Journal
Abstract
The element carbon has been used as a source of energy for the past few hundred years, and now in this era of technology, carbon has played a significant and very prominent role in almost all fields of science and technology. So as an honour to this marvellous element, we humans should know about its various forms of existence. In this review article, we shed light on all possible carbon-allotropes; similarities in their synthesis techniques and the starting materials; their wide range of possible availability; and finally, future perspectives and applications. A brief introduction is given on the types, structures, and shapes of the allotropes of carbon for a better understanding.
Keywords
carbon nanomaterials; carbon-allotropes; fullerenes; carbon nan otubes; synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu HJ, Cui WJ, Jin LH, Wang CX, Xia YY. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. J Mater Chem, 19, 3661 (2009). http://dx.doi.org/10.1039/B819820A.   DOI
2 University of Wisconsin-Madison. Bucky_nanofiber_detail05.jpg [Internet], c2005. Available from: http://www.news.wisc.edu/newsphotos/images/Bucky_nanofiber_detail05.jpg.
3 Nano-C. Fullerene Technology [Internet]. Available from: http://www.nano-c.com/fullerenetech.html.
4 Liu BC, Lyu SC, Lee TJ, Choi SK, Eum SJ, Yang CW, Park CY, Lee CJ. Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem Phys Lett, 373, 475 (2003). http://dx.doi.org/10.1016/S0009-2614(03)00636-5.   DOI   ScienceOn
5 Dubey P, Muthukumaran D, Dash S, Mukhopadhyay R, Sarkar S. Synthesis and characterization of water-soluble carbon nanotubes from mustard soot. Pramana, 65, 681 (2005). http://dx.doi.org/10.1007/BF03010456.   DOI
6 Wang Z, Zhao Z, Qiu J. Synthesis of branched carbon nanotubes from coal. Carbon, 44, 1321 (2006). http://dx.doi.org/10.1016/j.carbon.2005.12.030.   DOI
7 Qiu J, Li Y, Wang Y, Li W. Production of carbon nanotubes from coal. Fuel Process Technol, 85, 1663 (2004). http://dx.doi.org/10.1016/j.fuproc.2003.12.010.   DOI
8 Bang JJ, Trillo EA, Murr LE. Utilization of selected area electron diffraction patterns for characterization of air submicron particulate matter collected by a thermophoretic precipitator. J Air Waste Manage Assoc, 53, 227 (2003). http://dx.doi.org/10.1080/10473289.2003.10466133.   DOI
9 Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett, 80, 1267 (2002). http://dx.doi.org/10.1063/1.1450264.   DOI
10 Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, Cheng HM. Semiconducting properties of cup-stacked carbon nanotubes. Carbon, 47, 731 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.005.   DOI
11 Monthioux M, Noe L, Dussault L, Dupin JC, Latorre N, Ubieto T, Romeo E, Royo C, Monzon A, Guimon C. Texturising and structurising mechanisms of carbon nanofilaments during growth. J Mater Chem, 17, 4611 (2007). http://dx.doi.org/10.1039/B707742D.   DOI
12 Lagow R, Mitchell D, RM Brown Lab. Carbon Megatubes [Internet], c2000. Available from: http://www.botany.utexas.edu/facstaff/facpages/mbrown/tubes/.
13 McDonough JK, Gogotsi Y. Carbon onions: synthesis and electrochemical applications. Interface, 22, 61 (2013).
14 Kuznetsov VL, Chuvilin AL, Butenko YV, Mal'kov IY, Titov VM. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett, 222, 343 (1994). http://dx.doi.org/10.1016/0009-2614(94)87072-1.   DOI
15 Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov SK, Butenko YV, Mal'kov IY. Effect of explosion conditions on the structure of detonation soots: ultradisperse diamond and onion carbon. Carbon, 32, 873 (1994). http://dx.doi.org/10.1016/0008-6223(94)90044-2.   DOI
16 Delgado JL, Herranz MaA, Martin N. The nano-forms of carbon. J Mater Chem, 18, 1417 (2008). http://dx.doi.org/10.1039/B717218D.   DOI
17 Martel R, Shea HR, Avouris P. Rings of single-walled carbon nanotubes. Nature, 398, 299 (1999). http://dx.doi.org/10.1038/18589.   DOI
18 Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 126, 12736 (2004). http://dx.doi.org/10.1021/ja040082h.   DOI
19 Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y. Smallest carbon nanotube is 3 ${\AA}$ in diameter. Phys Rev Lett, 92, 125502 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.125502.   DOI
20 C121258: [12]Cycloparaphenylene [Internet]. Available from: http://www.aladdin-e.com/itemDetail.do?cust_item=C121258-10mg&whs_id=1.
21 Itoh S, Ihara S, Kitakami J. Toroidal form of carbon C360. Phys Rev B, 47, 1703 (1993). http://dx.doi.org/10.1103/PhysRevB.47.1703.   DOI
22 Laguna Design. Nanotube Technology, Computer Artwork [Intertion net], c2013. Available from: http://fineartamerica.com/featured/3-nanotube-technology-computer-artwork-laguna-design.html.
23 Krasheninnikov A. NanoBud.JPG [Internet], c2006. Available from: https://www.newworldencyclopedia.org/entry/File:NanoBud.JPG.
24 Hornbaker DJ, Kahng SJ, Misra S, Smith BW, Johnson AT, Mele EJ, Luzzi DE, Yazdani A. Mapping the one-dimensional electronic states of nanotube peapod structures. Science, 295, 828 (2002). http://dx.doi.org/10.1126/science.1068133.   DOI   ScienceOn
25 Okada S, Saito S, Oshiyama A. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys Rev Lett, 86, 3835 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.3835.   DOI   ScienceOn
26 Kaiser W, Bond WL. Nitrogen, a major impurity in common type I diamond. Phys Rev, 115, 857 (1959). http://dx.doi.org/10.1103/PhysRev.115.857.   DOI
27 Britz DA, Khlobystov AN, Wang J, O'Neil AS, Poliakoff M, Ardavan A, Briggs GA. Selective host-guest interaction of singlewalled carbon nanotubes with functionalised fullerenes. Chem Commun, 176 (2004). http://dx.doi.org/10.1039/b313585c.   DOI
28 Mitchell DR, Brown RM Jr., Spires TL, Romanovicz DK, Lagow RJ. The synthesis of megatubes: new dimensions in carbon materials. Inorg Chem, 40, 2751 (2001). http://dx.doi.org/10.1021/ic000551q.   DOI
29 Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. Diamond formation from mantle carbonate fluids. Nature, 400, 417 (1999). http://dx.doi.org/10.1038/22678.   DOI
30 Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid $C_{60}$: a new form of carbon. Nature, 347, 354 (1990). http://dx.doi.org/10.1038/347354a0.   DOI
31 Ando T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater, 1, 17 (2009). http://dx.doi.org/10.1038/asiamat.2009.1.   DOI
32 Johnson RR. About carbon/boron nitride nanostructure builder plugin [Internet]. Available from: http://www.ks.uiuc.edu/Research/vmd/plugins/nanotube/.
33 Pfeiffer R, Pichler T, Kim Y, Kuzmany H. Double-wall carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus M, eds. Carbon Nanotubes, Vol. 111, Springer Berlin, Heidelberg, 495 (2008). http://dx.doi.org/10.1007/978-3-540-72865-8_16.
34 Choudhary V, Gupta A. Polymer/carbon nanotube nanocomposites. In: Yellampalli S, ed. Carbon Nanotubes: Polymer Nanocomposites, Chapter 4, InTech (2011). http://dx.doi.org/10.5772/18423.   DOI
35 Hirsch A. The era of carbon allotropes. Nat Mater, 9, 868 (2010). http://dx.doi.org/10.1038/nmat2885.   DOI   ScienceOn
36 Ishii Y, Matsuura S, Segawa Y, Itami K. Synthesis and dimerization of chloro[10]cycloparaphenylene: a directly connected cycloparaphenylene dimer. Org Lett, 16, 2174 (2014). http://dx.doi.org/10.1021/ol500643c.   DOI
37 Parker CB, Raut AS, Brown B, Stoner BR, Glass JT. Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res, 27, 1046 (2012). http://dx.doi.org/10.1557/jmr.2012.43.   DOI
38 Yu K, Lu G, Bo Z, Mao S, Chen J. Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J Phys Chem Lett, 2, 1556 (2011). http://dx.doi.org/10.1021/jz200641c.   DOI
39 Wikipedia. Allotropes of carbon [Internet]. Available from: http://en.wikipedia.org/wiki/Allotropes_of_carbon#mediaviewer/File:Eight_Allotropes_of_Carbon.png.
40 Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. $C_{60}$: Buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0.   DOI
41 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.   DOI
42 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI   ScienceOn
43 Bundy FP, Kasper JS. Hexagonal diamond: a new form of carbon. J Chem Phys, 46, 3437 (1967). http://dx.doi.org/10.1063/1.1841236.   DOI
44 Li LS, Yan X. Colloidal graphene quantum dots. J Phys Chem Lett, 1, 2572 (2010). http://dx.doi.org/10.1021/jz100862f.   DOI
45 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI   ScienceOn
46 Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater, 22, 2971 (2012). http://dx.doi.org/10.1002/adfm.201200166.   DOI
47 Frondel C, Marvin UB. Lonsdaleite, a hexagonal polymorph of diamond. Nature, 214, 587 (1967). http://dx.doi.org/10.1038/214587a0.   DOI
48 Lonsdaleite [Internet]. Available from: http://www.answers.com/topic/lonsdaleite.
49 Chang R. Chemistry. 9th ed., McGrawHill Higher Education, Boston, MA, 52 (2007).
50 Kenney D, Center BP. Deep Carbon Observatory releases "Carbon on Earth" [Internet], c2013. Available from: http://blog.mbl.edu/?p=2221.
51 Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater, 20, 1160 (2008). http://dx.doi.org/10.1002/adma.200701364.   DOI
52 Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem, 84, 5351 (2012). http://dx.doi.org/10.1021/ac3007939.   DOI
53 Wang F, Chen YH, Liu CY, Ma DG. White light-emitting devices based on carbon dots' electroluminescence. Chem Commun, 47, 3502 (2011). http://dx.doi.org/10.1039/C0CC05391K.   DOI
54 Chaturbedy P, Chatterjee S, Selvi RB, Bhat A, Kavitha MK, Tiwari V, Patel AB, Kundu TK, Maji TK, Eswaramoothy M. Multifunctional carbon nanospheres with magnetic and luminescent probes:probable brain theranostic agents. J Mater Chem B, 1, 939 (2013). http://dx.doi.org/10.1039/C2TB00134A.   DOI
55 BMW i8 in detail. Carbon fiber explained [Internet]. Available from: http://bmwi.bimmerpost.com/forums/showthread.php?t=931027.
56 Yang R, Li H, Qiu X, Chen L. A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates. Chemistry, 12, 4083 (2006). http://dx.doi.org/10.1002/chem.200501474.   DOI   ScienceOn
57 Caihong W, Chu X, Wu M. Highly sensitive gas sensors based on hollow $SnO_2$ spheres prepared by carbon sphere template method. Sens Actuators B, 120, 508 (2007). http://dx.doi.org/10.1016/j.snb.2006.03.004.   DOI
58 Pike CM, Grabner CP, Harkins AB. Fabrication of amperometric electrodes. J Vis Exp, 27, 1040 (2009). http://dx.doi.org/10.3791/1040.   DOI
59 Mu Y, Liang H, Hu J, Jiang L, Wan L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B, 109, 22212 (2005). http://dx.doi.org/10.1021/jp0555448.   DOI   ScienceOn
60 Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2, 25 (2001). http://dx.doi.org/10.1021/nl010065f.   DOI   ScienceOn
61 Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127.   DOI   ScienceOn
62 Lee SM, Lee YH. Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett, 76, 2877 (2000). http://dx.doi.org/10.1063/1.126503.   DOI   ScienceOn
63 Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun YP. Carbon "quantum" dots for optical bioimaging. J Mater Chem B, 1, 2116 (2013). http://dx.doi.org/10.1039/C3TB00018D.   DOI
64 Hsin YL, Hwang KC, Yeh CT. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc, 129, 9999 (2007). http://dx.doi.org/10.1021/ja072367a.   DOI   ScienceOn
65 Esawi AMK, Farag MM. Carbon nanotube reinforced composites: potential and current challenges. Mater Design, 28, 2394 (2007). http://dx.doi.org/10.1016/j.matdes.2006.09.022.   DOI   ScienceOn
66 Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast. Nano Lett, 5, 2448 (2005). http://dx.doi.org/10.1021/nl051748o.   DOI
67 Allemand PM, Khemani KC, Koch A, Wudl F, Holczer K, Donovan S, Gruner G, Thompson JD. Organic molecular soft ferromagnetism in a fullerene$C_{60}$. Science, 253, 301 (1991). http://dx.doi.org/10.1126/science.253.5017.301.   DOI
68 Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications? Adv Mater, 15, 1765 (2003). http://dx.doi.org/10.1002/adma.200301646.   DOI   ScienceOn
69 Atashbar MZ, Bejcek B, Singamaneni S, Santucci S. Carbon nanotube based biosensors. Proceedings of IEEE Sensors, Vienna, Austria, 1048 (2004). http://dx.doi.org/10.1109/ICSENS.2004.1426354.   DOI
70 Sotiropoulou S, Chaniotakis NA. Carbon nanotube array-based biosensor. Anal Bioanal Chem, 375, 103 (2003). http://dx.doi.org/10.1007/s00216-002-1617-z.   DOI
71 Star A, Steuerman DW, Heath JR, Stoddart JF. Starched carbon nanotubes. Angew Chem Int Ed, 41, 2508 (2002). http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A.   DOI   ScienceOn
72 Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Singleand multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 73, 2447 (1998). http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.122477.   DOI   ScienceOn
73 Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc, 127, 6021 (2005). http://dx.doi.org/10.1021/ja050062v.   DOI   ScienceOn
74 Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett, 6, 562 (2006). http://dx.doi.org/10.1021/nl051861e.   DOI   ScienceOn
75 Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc, 125, 4426 (2003). http://dx.doi.org/10.1021/ja029233b.   DOI
76 Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 50, 2999 (2009). http://dx.doi.org/10.1016/j.polymer.2009.04.058.   DOI   ScienceOn
77 Kamat P. Carbon nanomaterials: building blocks in energy conversion devices. Interface, 15, 45 (2006).
78 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.   DOI   ScienceOn
79 Choi H, Kim H, Hwang S, Choi W, Jeon M. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol Energy Mater Sol Cells, 95, 323 (2011). http://dx.doi.org/10.1016/j.solmat.2010.04.044.   DOI   ScienceOn
80 Lin YM, Dimitrakopoulos C, Farmer DB, Han SJ, Wu Y, Zhu W, Gaskill DK, Tedesco JL, Myers-Ward RL, Eddy CR, Jr., Grill A, Avouris P. Multicarrier transport in epitaxial multilayer graphene. Appl Phys Lett, 97, 112107 (2010). http://dx.doi.org/10.1063/1.3485671.   DOI
81 Thompson BC, Frechet JMJ. Polymer: fullerene composite solar cells. Angew Chem Int Ed, 47, 58 (2008). http://dx.doi.org/10.1002/anie.200702506.   DOI   ScienceOn
82 Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol, 9, 674 (2005). http://dx.doi.org/10.1016/j.cbpa.2005.10.005.   DOI   ScienceOn
83 Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc, 115, 6506 (1993). http://dx.doi.org/10.1021/ja00068a005.   DOI   ScienceOn
84 Holczer K, Klein O, Huang SM, Kaner RB, Fu K, Whetten RL, Diederich F. Alkali-fulleride superconductors: synthesis, composition, and diamagnetic shielding. Science, 252, 1154 (1991). http://dx.doi.org/10.1126/science.252.5009.1154.   DOI
85 Murr LE, Guerrero PA. Carbon nanotubes in wood soot. Atmos Sci Lett, 7, 93 (2006). http://dx.doi.org/10.1002/asl.138.   DOI
86 de Heer WA, Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett, 207, 480 (1993). http://dx.doi.org/10.1016/0009-2614(93)89033-E.   DOI
87 Mohan AN, Manoj B. Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int J Electrochem Sci, 7, 9537 (2012).
88 He C, Zhao N, Du X, Shi C, Ding J, Li J, Li Y. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scripta Mater, 54, 689 (2006). http://dx.doi.org/10.1016/j.scriptamat.2005.09.058.   DOI   ScienceOn
89 De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv, 3, 8286 (2013). http://dx.doi.org/10.1039/C3RA00088E.   DOI
90 Miao JY, Hwang DW, Narasimhulu KV, Lin PI, Chen YT, Lin SH, Hwang LP. Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon, 42, 813 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.053.   DOI
91 Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed, 46, 6473 (2007). http://dx.doi.org/10.1002/anie.200701271.   DOI
92 Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed, 49, 6726 (2010). http://dx.doi.org/10.1002/anie.200906623.   DOI   ScienceOn
93 Zheng GB, Kouda K, Sano H, Uchiyama Y, Shi YF, Quan HJ. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 42, 635 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.077.   DOI   ScienceOn
94 Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett, 9, 3137 (2009). http://dx.doi.org/10.1021/nl901260b.   DOI
95 National Aeronautics and Space Administration (NASA). Building a buckyball particle in space [Internet], c2012. Available from: http://www.nasa.gov/mission_pages/spitzer/multimedia/pia15266.html.
96 Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubi-Robles M, Fernandez B, Ruedas-Rama MJ, Megia-Fernandez A, Lapresta- Fernandez A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun, 49, 1103 (2013). http://dx.doi.org/10.1039/C2CC36450F.   DOI