• Title/Summary/Keyword: inoculum source

Search Result 98, Processing Time 0.029 seconds

Temperature Conditions for Inactivation of Tobacco Mosaic Virus in Dried Tobacco Leaf Debris (TMV 감염 잎담배가루의 바이러스 불활성화를 위한 온도 조건)

  • 김영호;채순용;박은경;이윤환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.120-125
    • /
    • 1996
  • Dried tobacco leaf debris infected with tobacco mosaic virus (TMV) was subjected to heat treatment (6$0^{\circ}C$~10$0^{\circ}C$) with or without addition of moisture and to room temperature for natural decay to examine the periods of time required for the inactivation of PMV in the inoculum source. Wet conditions (60% moisture content of the debris) for heat treatment were more efficient than dry conditions to inactivate the virus at 7$0^{\circ}C$~10$0^{\circ}C$, and which decrease of temperature, the time needed for the viral inactivation increased greatly. At 6$0^{\circ}C$ and 7$0^{\circ}C$, the temperaturein a compost heap during the actively decomposing period, it takes about 15 days or more for the complete inactivation of the virus. However, considering the decrease of the viral infectivity during the decomposition, a shorter period of time will be required to inactivate TMV in the conditions mentioned above, suggesting that a well decomposed organic manure containing tobacco leaf debris may not have infective TMV and may not provide a potential inoculum source.

  • PDF

The Manufacture of Inoculum for Fermented Pig Feed Production from Food Wastes (음식물류폐기물의 돼지 발효사료화를 위한 종모배양액 제조)

  • Lee, Kyung-Seok;Hong, Seung-Yoon;Kim, Young-Jun;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.98-108
    • /
    • 2007
  • In order to use food wastes for the source of fermented feed for pigs, this study was aimed to produce better culture inoculum by the aeration and addition of pig' s blood meal as sub nutrient. For the preparation of inoculum as bacterial strain, Lactobacillus brevis isolated from pig intestine, and a yeast Saccharomyces cerevisiae from strawberries were used. Molasses and whey were used as main ingredients for the culture solution as well as yeast extract and other ingredients as sub nutrients. As the experimental result, aeration showed a positive effect to enhance viable cell count or retarding death phase. Although sub nutrient yeast extracts were replaced with pig's blood meal, fermentation characteristics were almost similar to that of yeast extract. When the inoculum was stored at room temperature, L. brevis and S. cerevisiae maintained the viable cell concentration of approximately 8 log cfu/mL for 1 week. 2 Days after the culture solution was mixed with food waste, the number of unwanted bacteria had rapidly increased, but E.coli was not detected for 5 days.

  • PDF

Optimization of culture condition for the gellan production by Pseudomonas elodea ATCC 31461 (Pseudomonas elodea ATCC 31461에 의한 gellan 생산의 최적 배양조건)

  • Lim, Sung-Mi;Wu, Jian-Rong;Lee, Jin-Woo;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.705-711
    • /
    • 2003
  • The gellan was produced by Pseudomonas elodea under aerobic condition. In this study, the effects of inoculum size, carbon sources and concentration, nitrogen source, and C/N ratio on the cell growth and the production of gellan were evaluated. The maximum growth of P. elodea and gellan production was obtained at 5% (v/v) of inoculum size and glucose showed best results among 9 carbon sources tested. The maximum specific yield of 2.22 and productivity of $0.03 g/\ell$h were obtained at 1.0% (w/v) of glucose. The maximum gellan production was obtained at medium without ammonium nitrate. This indicates that nitrogen limitation is essential for the production of gellan. The highest cell and gellan production were obtained at 20 of C/N ratio.

Evaluation of Chemical Composition and In vitro Digestibility of Appennine Pasture Plants Using Yak (Bos grunniens) Rumen Fluid or Faecal Extract as Inoculum Source

  • Tufarelli, V.;Cazzato, E.;Ficco, A.;Laudadio, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1587-1593
    • /
    • 2010
  • Pastures of the Apennines of Central Italy contribute to feed resources of high altitude (above 1,300 m sea level) grazing systems. The objective of this study was to evaluate the effectiveness of faecal extract from the yak (Bos grunnienes) as an alternative microbial inoculum to rumen fluid for estimation of digestibility of several forage species. Forage samples produced at high altitude were tested in this study: four legumes (Lathyrus sativus L., Lotus corniculatus L., Onobrychis viciaefolia L. and Trifolium pratense L.), three forbs (Achillea millefolium L., Potentilla reptans L. and Teucrium flavum L.) and one grass (Brachipodyum pinnatum L.) were incubated with yak rumen fluid or faecal extract. A large variability in chemical composition was observed among the species collected. Rumen liquor and faecal samples were collected from adult healthy yak. The $Daisy^{II}$ incubator was used to evaluate the nutrient digestibility of forages using rumen liquor as control and faecal extract as alternative microbial inoculum sources. Filter bags containing samples of browse species were added to the four digestion vessels along with their respective inoculum and then incubated for 48 h and dry matter (DM), organic matter (OM), crude protein (CP), neutral and detergent fiber (NDF) digestibility was determined. There was a significant relationship between estimates, indicating that faecal liquor has the potential to be used instead of rumen fluid for estimation of in vitro digestibility of plants. It is concluded that the $Daisy^{II}$ incubator results are appropriate for the determination of in vitro digestibility of nutrients using faecal liquor to define the potential for adaptation of yak to new pastures.

Producing Alkaline Lipase by Fusarium oxysporum Using Unconventional Medium Components

  • Quadros, Cedenir Pereira de;Bicas, Juliano Lemos;Neri-Numa, Iramaia Angelica;Pastore, Glaucia Maria
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1519-1522
    • /
    • 2009
  • This study reports the use of different inducing agents (olive, soybean, and used frying oils) and culture mediums [synthetic medium (SM), whey protein, and corn steep liqueur (SL)] to optimize the production of lipase by Fusarium oxysporum. A relationship among the inoculum size, presence of a fat source, fungal growth, and lipase production was evident during the fermentation. The best results were achieved when the inoculum was grown in SM or SL and the fermentation was developed in SM with frying oil as the inducing agent. The maximum activity (about 15 U/mL) was obtained after a 72 hr cultivation.

Evaluation of Biohydrogen Production Using Various Inoculum Sources (다양한 접종원을 이용한 바이오수소 생산 평가)

  • Geumhee, Kim;Jiho, Lee;Hyoju, Yang;Yun-Yeong, Lee;Yoonyong, Yang;Sungho, Choi;Moonsuk, Hur;Byounghee, Lee;Kyung-Suk, Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.557-562
    • /
    • 2022
  • In this study we evaluated biohydrogen production potential as operational parameters (substrate, salt concentration, and temperature) using eight inoculum sources. While the volumetric biohydrogen production rate was significantly affected by temperature and inoculum sources, substrate and salt concentration did not have a significant effect on the biohydrogen production. Mesophilic temperature (37℃) was also found more appropriate for the hydrogen production than thermophilic temperature (50℃). Rate, while the eight inoculum sources, anaerobic digestion sludge exhibited the fastest biohydrogen production. The maximum production rate from anaerobic digestion sludge was 2,729 and 1,385 ml-H2·l-1·d-1 at mesophilic and thermophilic temperature, respectively.

Establishment of some Conditions for the Development of Legume Inoculant (근류균 접종제 개발을 위한 우수 증량제의 선발 및 생산 최적조건)

  • Kim, Chang-Jin;Rhee, Yoon;Yoo, Ick-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.146-151
    • /
    • 1990
  • The viability of rhizobia according to various kinds of carrier materials, inoculum size, storage temperature and sterilization methods was investigated for the development of legume inoculat. The results were followings. 1. Peat and perlite were favorable as a carrier material. 2. Rhizobia counts were reached to $5{\times}10^8cells/g$ carrier 1-2 weeks after inoculation with inoculum size below $10^4cells/g$ carrier. 3. $10^9cells/g$ carrier was maintained 12 weeks after storage at room temperature. 4. Steam heat sterilization was the best method for carrier sterilization among methods used in this study. Dry heat and ${\gamma}$-ray sterilization were also applicable.

  • PDF

Survey of Overwintering Inoculum Potential of Anthracnose of Sweet Persimmon Caused by Colletotrichum gloeosporioides (감나무 탄저병균(Collectotrichum gloeosporioides)의 월동 전염원 조사)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Chung, Bu-Keun
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.204-206
    • /
    • 2007
  • In 2006 to 2007, the potential inoculum source of the anthracnose of sweet persimmon caused by Colletotrichum gloeosporioides was surveyed. The infected twigs, buds, dead twigs, petiole, leaves, dropped fruits were collected and tested for their possibility as overwintering inoculum. The detection rates of the pathogen from various parts of sweet persimmon tree were varied. When the collected samples were examined in April. Over than 93.3% of infected twig samples were harbored mycelia of C. gloeosporioides, and 46.7% of infected buds, 36.7% of dead twigs, 23.3% of petioles, and 16.7% of leaves were beared pathogenic fungus. No pathogenic fungus were detecded from healthy twigs and buds. Infected twigs and bud was important overwintering sites and formed conidia actively in next spring. The infected twigs, leaves, petioles, and fruits in growing season produced great number of conidia and caused active dissemination of the anthracnose disease in sweet persimmon. In growing season, all of the infected parts, such as twigs, leaves, petioles, and fruits produced pathogenic fungus.

Effects of Temperature and Moisture on the Survival of Colletotrichum acutatum, the Causal Agent of Pepper Anthracnose in Soil and Pepper Fruit Debris

  • Kang, Beum-Kwan;Kim, Joo-Hyeong;Lee, Kyeong-Hee;Lim, Sang-Cheol;Ji, Jae-Jun;Lee, Jong-Won;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.128-135
    • /
    • 2009
  • The survival of Colletotrichum acutatum was investigated in soil, infected fruits, and infected fruit debris incorporated into soil at several temperatures with different soil moisture levels. Samples were examined at 2-week intervals for 18 weeks to determine the survival of the pathogen based on the number of colony forming unit (CFU) of C. acutatum recovered on a semi-selective medium. C. acutatum conidia survived in both sterile and non-sterile soil at 4 and $10^{\circ}C$ for 18 weeks. If infected pepper fruits were completely dried, C. acutatum survived for 18 weeks at temperature from 4 to $20^{\circ}C$. Soil temperature and moisture affected the survival of C. acutatum in infected fruit debris incorporated into soil after air-drying. The effect of soil moisture on survival was weaker at low temperatures than at high temperatures. For up to 16 weeks, conidia were recovered from fruit debris in soil that had been kept at 4 to $20^{\circ}C$ and below 6% soil moisture. Conidia were recovered from fields until approximately 6 months after pepper fruits were harvested. Using PCR with species-specific primers and a pathogenicity test, we identified conidia recovered from soil and infected fruit from both the laboratory and field as C. acutatum and as the primary inoculum causing pepper anthracnose.

Microscopic Observation of the Pseudothecial Development of Mycosphaerella nawae on Persimmon Leaves Infected by Ascospore and Conidia (감나무 둥근무늬낙엽병균 Mycosphaerella nawae의 자낭포자 및 분생포자에 감염된 이병엽 상에서 위자낭각 형성과정 관찰)

  • 권진혁;강수웅;박창석;김희규
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.408-412
    • /
    • 1998
  • In order to illustrate the role of conidia of Mycosphaerella nawae as a secondary inoculum in nature, pseudothecial development on persimmon leaves was investigated microscopically. The fungal ascospores have been believed as the primary or only inoculum source in nature, however, pseudothecia were readily formed on persimmon leaves infected naturally and artificially by conidia. The pseudothecia of M. nawae were found to form in the tissues of infected leaves while the leaves were still hanging on the trees. The size of pseudothecia were approximately 51.0~122.4$\times$51.0~112.2 ${\mu}{\textrm}{m}$ (82.8 $\times$72.5 ${\mu}{\textrm}{m}$in average), the shapes were spherical, ovoid or occidental pear type. The sizes of asci were approximately 30.6~61.2$\times$8.2~10.2 ${\mu}{\textrm}{m}$(46.6$\times$9.4 ${\mu}{\textrm}{m}$ in average) and the shapes were cylinder or banana. The ascospores were mostly spindle type, and the sizes were 10.2~12.2$\times$3.1~4.1 ${\mu}{\textrm}{m}$ (11.4$\times$3.2 ${\mu}{\textrm}{m}$ in average)-like. The pseudothecial formation was initiated before defoliation and morphological characteristics of the pseudothecia, ascus and ascospores on the infected leaves were fully illustrated in this study. Results indicated that conidia of M. nawae induce circular leaf spot of persimmon as much as ascospores, and might play an important role of the disease epidemics in nature.

  • PDF