• 제목/요약/키워드: inoculum potential

검색결과 83건 처리시간 0.025초

Development of K-Maryblyt for Fire Blight Control in Apple and Pear Trees in Korea

  • Mun-Il Ahn;Hyeon-Ji Yang;Sung-Chul Yun
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.290-298
    • /
    • 2024
  • K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This model facilitates the precise determination of the blossom infection timing and identification of primary inoculum sources, akin to Maryblyt, predicting flower infections and the appearance of symptoms on various plant parts, including cankers, blossoms, and shoots. Nevertheless, K-Maryblyt has undergone significant improvements: Integration of Phenology Models for both apple and pear trees, Adoption of observed or predicted hourly temperatures for Epiphytic Infection Potential (EIP) calculation, incorporation of adjusted equations resulting in reduced mean error with 10.08 degree-hours (DH) for apple and 9.28 DH for pear, introduction of a relative humidity variable for pear EIP calculation, and adaptation of modified degree-day calculation methods for expected symptoms. Since the transition to a model-based control policy in 2022, the system has disseminated 158,440 messages related to blossom control and symptom prediction to farmers and professional managers in its inaugural year. Furthermore, the system has been refined to include control messages that account for the mechanism of action of pesticides distributed to farmers in specific counties, considering flower opening conditions and weather suitability for spraying. Operating as a pivotal module within the Fire Blight Forecasting Information System (FBcastS), K-Maryblyt plays a crucial role in providing essential fire blight information to farmers, professional managers, and policymakers.

Cold-Adapted and Rhizosphere-Competent Strain of Rahnella sp. with Broad-Spectrum Plant Growth-Promotion Potential

  • Vyas, Pratibha;Joshi, Robin;Sharma, K.C.;Rahi, Praveen;Gulati, Ashu;Gulati, Arvind
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1724-1734
    • /
    • 2010
  • A phosphate-solubilizing bacterial strain isolated from Hippophae rhamnoides rhizosphere was identified as Rahnella sp. based on its phenotypic features and 16S rRNA gene sequence. The bacterial strain showed the growth characteristics of a cold-adapted psychrotroph, with the multiple plant growth-promoting traits of inorganic and organic phosphate solubilization, 1-aminocyclopropane-1-carboxylate-deaminase activity, ammonia generation, and siderophore production. The strain also produced indole-3-acetic acid, indole-3-acetaldehyde, indole-3-acetamide, indole-3-acetonitrile, indole-3-lactic acid, and indole-3-pyruvic acid in tryptophan-supplemented nutrient broth. Gluconic, citric and isocitric acids were the major organic acids detected during tricalcium phosphate solubilization. A rifampicin-resistant mutant of the strain exhibited high rhizosphere competence without disturbance to the resident microbial populations in pea rhizosphere. Seed bacterization with a charcoal-based inoculum significantly increased growth in barley, chickpea, pea, and maize under the controlled environment. Microplot testing of the inoculum at two different locations in pea also showed significant increase in growth and yield. The attributes of cold-tolerance, high rhizosphere competence, and broad-spectrum plant growth-promoting activity exhibited the potential of Rahnella sp. BIHB 783 for increasing agriculture productivity.

Effect of 'Azotobacter' Bioinoculant on the Growth and Substrate Utilization Potential of Pleurotus eous Seed Spawn

  • Eyini, M.;Parani, K.;Pothiraj, C.;Rajapandy, V.
    • Mycobiology
    • /
    • 제33권1호
    • /
    • pp.19-22
    • /
    • 2005
  • We investigated the effect of nitrogen fixing Azotobacter bioinoculant on the mycelial growth and the rate of substrate utilization by Pleurotus eous. The synergistic or antagonistic role of the microorganism during dual culturing with the mushroom or the competitor molds Trichoderma viride, and Trichoderma reesi was studied. Azotobacter was inhibitory to the molds, which are competitive to the mushroom in the seed spawn substrate, but was synergistic towards the mushroom. The growth, substrate utilization potential as total nitrogen content and cellulase enzyme activities of the mushroom in the seed spawn substrate were also enhanced in the presence of the bioinoculant at lower inoculum concentrations, upto 5 ml broth culture per spawn bottle.

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$

  • Nevatalo, Laura M.;Bijmans, Martijn F. M.;Lens, Piet N. L.;Kaksonen, Anna H.;Puhakka, Jaakko A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.615-621
    • /
    • 2010
  • The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$. Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$, and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$, respectively. In the GLB experiment at $9^{\circ}C$, a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$, corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$, was obtained. The electron flow from the consumed $H_2$-gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.

Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation

  • Kim, Yong-Min;Park, Taehyung;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.485-496
    • /
    • 2019
  • Sealing of leakage in waterfront or water-retaining structures is one of the major issues in geotechnical engineering practices. With demands for biological methods as sustainable ground improvement techniques, bioclogging, defined as the reduction in hydraulic conductivity of soils caused by microbial activities, has been considered as an alternative to the chemical grout techniques for its economic advantages and eco-friendliness of microbial by-products. This study investigated the feasibility of bioaugmentation and biostimulation methods to induce fermentation-based bioclogging effect in coarse sands. In the bioaugmentation experiments, effects of various parameters and conditions, including grain size, pH, and biogenic gas generation, on hydraulic conductivity reduction were examined through a series of column experiments while Leuconostoc mesenteroides, which produce an insoluble biopolymer called dextran, was used as the model bacteria. The column test results demonstrate that the accumulation of bacterial biopolymer can readily reduce the hydraulic conductivity by three-to-four orders of magnitudes or by 99.9-99.99% in well-controlled environments. In the biostimulation experiments, two inoculums of indigenous soil bacteria sampled from waterfront embankments were prepared and their bioclogging efficiency was examined. With one inoculum containing species capable of fermentation and biopolymer production, the hydraulic conductivity reduction by two orders of magnitude was achieved, however, no clogging was found with the other inoculum. This implies that presence of indigenous species capable of biopolymer production and their population, if any, play a key role in causing bioclogging, because of competition with other indigenous bacteria. The presented results provide fundamental insights into the bacterial biopolymer formation mechanism, its effect on soil permeability, and potential of engineering bacterial clogging in subsurface.

Development of a Novel Spawn (Block Spawn) of an Edible Mushroom, Pleurotus ostreatus, in Liquid Culture and its Cultivation Evaluation

  • Zhang, Wei-Rui;Liu, Sheng-Rong;Kuang, Yun-Bo;Zheng, Shi-Zhong
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.97-104
    • /
    • 2019
  • Mushroom cultivation has gained increased attention in recent years. Currently, only four types of spawn, including sawdust spawn, grain spawn, liquid spawn, and stick spawn, are commonly available for mushroom cultivation. This limited spawn diversity has led to difficulty in selecting suitable inoculum materials in some cultivation. In this study, three small blocks of lignocellulosic agro-wastes and one block of a synthetic matrix were prepared as support for growing Pleurotus ostreatus in liquid medium. Mycelium-adsorbed blocks were then evaluated for their potential as block spawn for fructification. Our results indicated that the edible fungus was adsorbed and abundantly grew internally and externally on loofah sponge and synthetic polyurethane foam (PUF) supports and also has the ability to attach and grow on the surface of sugarcane bagasse and corncob supports. The mycelia of P. ostreatus adhered on corncob exhibited the highest metabolic activity, while those on the PUF showed the least activity. Mycelial extension rates of block spawns made of agro-waste materials were comparable to that of sawdust spawn, but the block spawn of PUF showed a significantly lower rate. No significant differences in cropping time and yield were observed among cultivations between experimental block spawns and sawdust spawns. Moreover, the corncob block spawn maintained its fruiting potential during an examined period of 6-month storage. The developed block spawn could be practically applied in mushroom cultivation.

올방개 지문무늬병균의 효과적 처리방법에 의한 올방개 제초효과 (Potential Appilication of Epicoccosorus nematosporus for the Control of Water chestnut)

  • 홍연규;조재민;엄재열;류길림
    • 한국식물병리학회지
    • /
    • 제13권3호
    • /
    • pp.167-171
    • /
    • 1997
  • 올방개 지문무늬병균(E. mematosporus)의 접종농도, 처리회수, 올방개의 모령이 제초효과에 미치는 영향을 온실에서 검정하였다. 포자현택액의 농도를 $10^{5}$ conidia/ml로 조정하여 분무접종하였을 때 15~20일 이내에 올방개 지상부 줄기의 82.6%~92.1% 정도가 고사하였으나, 그 이하의 농도에서는 제초효과가 53.7%이하로 급격히 감소하였다. 또한 지상부 줄기의 고사는 지하부 괴경형성에서도 영향을 미쳐, $10^{5}$ conidia/ml의 농도에서는 무처리나 $10^[3},\;10^{4}$ 농도의 처리에 비해 약 6~21배의 괴격형성 억제력을 나타내었다. 올방개 지문무늬평균 분생포자현탁액($6.3\;{\times}\;10^{5}$ conidia/ml)은 여러번 처리할수록 제초효과가 높았는데 2회 이상 처리했을 때 지상부 줄기의 고사율(93.8%)이 급격히 증가하였고 고사하기까지의 시간도 단축되었으며 신초의 발생율은 1회 처리에 비해 2.5배 무처리에 비해 12배 감소시켰고 지하부 괴경형성도 1회처리에 비해 6배, 무처리에 비해 35배 억제하였다. 올방개의 모령에 따라서도 제초효율에 차이가 있었는데 신초 형성후 20일 되었을 때 처리하는 것이 줄기 고사율이 가장 높았고, 신초의 발생율이 현저히 감소하였으며 또한 지하부 괴경형성 억제력도 높게 나타났다. 이상의 결과로 보아 올방개 지문무늬병균의 최적처리의 포자량은 $10^[5}$ conidia/ml 이상, 1주일 간격으로 2~3회 처리하며 신초형성 20일 후 처리하는 것이 가장 효과적이라 생각된다.

  • PDF

발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병 방제효과 (Control Efficacy of a New Fungicide Fludioxonil on Lettuce Gray Mold According to Several Conditions)

  • 최경자;장경수;최용호;김진철
    • 식물병연구
    • /
    • 제15권3호
    • /
    • pp.217-221
    • /
    • 2009
  • Fludioxonil은 미국 EPA에 의해 저독성(reduced-risk) 살균제로 분류되었으며, 이 살균제는 Pseudomonas pyrrocinia가 생산하는 항균 물질인 pyrrolnitrin을 선도 물질로 하여 합성하였다. 본 연구에서는 상추 품종, 기주 식물의 생육 시기, Botrytis cinerea 포자농도, 접종원의 영양분 농도 등의 발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병에 대한 방제효과를 온실에서 실험하였다. 상추의 생육시기에 따른 fludioxonil 방제효과를 실험한 결과, 2 ${\mu}g$/ml 처리구는 어린 유묘에서 잿빛곰팡이병 방제효과가 더 높았으나, 10 ${\mu}g$/ml 이상 농도에서는 생육 시기에 따른 방제효과의 차이는 거의 없었다. 또한 fludioxonil 10 ${\mu}g$/ml 이상 농도 처리구는 B. cinerea의 포자 농도(2.5$\times$10개/ml 부터 $2{\times}10^6$ 개/ml까지)에 관계없이 모두 우수한 방제효과를 나타냈다. 반면에 fludioxonil 2 ${\mu}g$/ml은 접종원의 포자농도가 높을수록 낮은 방제효과를 보였다. 그리고 영양분농도에 따른 fludioxonil의 잿빛곰팡이병 방제효과를 실험한 결과, potato dextrose broth의 농도가 낮을수록 fludioxonil은 상추 잿빛곰팡이병에 대한 높은 방제효과를 나타냈다. 이상의 결과로부터 살균제 fludioxonil은 상추 잿빛곰팡이병에 대한 효과적인 살균제임을 알 수 있었으며, 다만 낮은 농도에서는 발병 조건에 따라 다소 낮은 방제효과를 나타낼 수 있을 것이다.

담배 잔근의 요소처리에 의한 담배 모자이크 바이러스 방제 (Urea Application on Tobacco Stumps for the Control of Tobacco Mosaic Virus Infection)

  • 박은경;김영호;채순용;강신웅;이윤환
    • 한국연초학회지
    • /
    • 제16권2호
    • /
    • pp.97-101
    • /
    • 1994
  • Tobacco stalks were cut and removed from the field after harvest, and urea was treated by placing it on the cutting portions of the remaining tobacco stumps. Relative virus infectivity of the root residue(compared to the fresh root residue infected with TMV) was reduced to 14.6% in December, 1993(before overwintering) and to 8.5% in March, 1994 just before transplanting, indicating that the TMV infectivity decreased remarkably, but was preserved still in the root residue in the field soil. There was no significant difference in infectivity of remaining root tissue between the treated and untreated root residue. However, as roots with urea treatment had been extensively decayed, only about one - fifth of the initial root volume remained after overwintering. TMV occurred less (by one - third) in the urea treatment than in the control, suggesting that urea treatment effectively provented tobacco from TMV infection by reducing the inoculum potential.

  • PDF