• 제목/요약/키워드: innate immunity

검색결과 380건 처리시간 0.028초

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Construction of nervous necrosis virus (NNV) genome-based DNA replicon vectors for the delivery of foreign antigens

  • Jeong In Yang;Ki Hong Kim
    • 한국어병학회지
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2024
  • The advantages of replicon vectors of RNA viruses include a high ability to stimulate innate immunity and exponential amplification of target mRNA leading to high expression of foreign antigens. The present study aimed to construct a DNA-layered nervous necrosis virus (NNV) replicon vector system in which the capsid protein gene was replaced with a foreign antigen gene and to compare the efficiency of foreign antigen expression between the conventional DNA vaccine vector and the present replicon vector. We presented the first report of a nodavirus DNA replicon-based foreign antigen expression system. Instead of a two-vector system, we devised a one-vector system containing both an NNV RNA-dependent RNA polymerase cassette and a foreign antigen-expressing cassette. This single-vector approach circumvents the issue of low foreign protein expression associated with the low co-transfection efficiency of a two-vector system. Cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 (with the capsid gene ORF replaced with VHSV glycoprotein ORF) exhibited significantly higher transcription of the VHSV glycoprotein gene compared to cells transfected with either a vector without hammerhead ribozyme or a conventional DNA vaccine vector expressing the VHSV glycoprotein. Furthermore, the transcription level of the VHSV glycoprotein in cells transfected with a vector harboring hammerhead ribozyme-fused RNA1 and RNA2 showed a significant increase over time. These results suggest that NNV genome-based DNA replicon vectors have the potential to induce stronger and longer expression of target antigens compared to conventional DNA vaccine vectors.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Heterogeneity of Human γδ T Cells and Their Role in Cancer Immunity

  • Hye Won Lee;Yun Shin Chung;Tae Jin Kim
    • IMMUNE NETWORK
    • /
    • 제20권1호
    • /
    • pp.5.1-5.15
    • /
    • 2020
  • The γδ T cells are unconventional lymphocytes that function in both innate and adaptive immune responses against various intracellular and infectious stresses. The γδ T cells can be exploited as cancer-killing effector cells since γδ TCRs recognize MHC-like molecules and growth factor receptors that are upregulated in cancer cells, and γδ T cells can differentiate into cytotoxic effector cells. However, γδ T cells may also promote tumor progression by secreting IL-17 or other cytokines. Therefore, it is essential to understand how the differentiation and homeostasis of γδ T cells are regulated and whether distinct γδ T cell subsets have different functions. Human γδ T cells are classified into Vδ2 and non-Vδ2 γδ T cells. The majority of Vδ2 γδ T cells are Vγ9δ2 T cells that recognize pyrophosphorylated isoprenoids generated by the dysregulated mevalonate pathway. In contrast, Vδ1 T cells expand from initially diverse TCR repertoire in patients with infectious diseases and cancers. The ligands of Vδ1 T cells are diverse and include the growth factor receptors such as endothelial protein C receptor. Both Vδ1 and Vδ2 γδ T cells are implicated to have immunotherapeutic potentials for cancers, but the detailed elucidation of the distinct characteristics of 2 populations will be required to enhance the immunotherapeutic potential of γδ T cells. Here, we summarize recent progress regarding cancer immunology of human γδ T cells, including their development, heterogeneity, and plasticity, the putative mechanisms underlying ligand recognition and activation, and their dual effects on tumor progression in the tumor microenvironment.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • 통합자연과학논문집
    • /
    • 제17권2호
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

The Significance of N6-Methyladenosine RNA Methylation in Regulating the Hepatitis B Virus Life Cycle

  • Jae-Su Moon;Wooseong Lee;Yong-Hee Cho;Yonghyo Kim;Geon-Woo Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.233-239
    • /
    • 2024
  • N6-methyladenosine (m6A) RNA methylation has recently emerged as a significant co-transcriptional modification involved in regulating various RNA functions. It plays a vital function in numerous biological processes. Enzymes referred to as m6A methyltransferases, such as the methyltransferase-like (METTL) 3-METTL14-Wilms tumor 1 (WT1)-associated protein (WTAP) complex, are responsible for adding m6A modifications, while m6A demethylases, including fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), can remove m6A methylation. The functions of m6A-methylated RNA are regulated through the recognition and interaction of m6A reader proteins. Recent research has shown that m6A methylation takes place at multiple sites within hepatitis B virus (HBV) RNAs, and the location of these modifications can differentially impact the HBV infection. The addition of m6A modifications to HBV RNA can influence its stability and translation, thereby affecting viral replication and pathogenesis. Furthermore, HBV infection can also alter the m6A modification pattern of host RNA, indicating the virus's ability to manipulate host cellular processes, including m6A modification. This manipulation aids in establishing chronic infection, promoting liver disease, and contributing to pathogenesis. A comprehensive understanding of the functional roles of m6A modification during HBV infection is crucial for developing innovative approaches to combat HBV-mediated liver disease. In this review, we explore the functions of m6A modification in HBV replication and its impact on the development of liver disease.

Compressive stress induces collective migration through cytoskeletal remodelling in nasal polyp epithelium

  • Ji Myung Chung;Seong Gyu Lee;Jae-Sung Nam;Jong-Gyun Ha;Ji Hye Chung;Hyung-Ju Cho;Chang-Hoon Kim;Sang-Nam Lee;Hyungsuk Lee;Joo-Heon Yoon
    • Journal of Rhinology
    • /
    • 제59권1호
    • /
    • pp.49-58
    • /
    • 2021
  • Background: Nasal polyps in the nasal cavity and mucous discharge inside the maxillary sinus exhibit compressive stress on the nasal mucosal epithelium. However, there have been only a few studies on how compressive stress impacts the human nasal mucosal epithelium. Methodology: We investigated the effect of compressive stress on collective migration, junctional proteins, transepithelial electrical resistance, epithelial permeability, and gene expression in well-differentiated normal human nasal epithelial (NHNE) cells and human nasal polyp epithelial (HNPE) cells. Results: NHNE cells barely showed collective migration at compressive stress up to 150 mmH20. However, HNPE cells showed much greater degree of collective migration at a lower compressive stress of 100 mmH20. The cell migration of HNPE cells subjected to 100 mmH2O compression was significantly decreased at day 3 and was recovered to the status prior to the compressive stress by day 7, indicating that HNPE cells are relatively more sensitive to mechanical pressure than NHNE cells. Compressive stress also increased transepithelial electrical resistance and decreased epithelial permeability, indicating that the compressive stress disturbed the structural organization rather than physical interactions between cells. In addition, we found that compressive stress induced gene expressions relevant to airway inflammation and tissue remodelling in HNPE cells. Conclusion: Taken together, these findings demonstrate that compressive stress on nasal polyp epithelium is capable of inducing collective migration and induce increased expression of genes related to airway inflammation, innate immunity, and polyp remodelling, even in the absence of inflammatory mediators.

심한 Respiratory Syncytial Virus 감염증과 선천성 면역에 관련된 유전적 소인에 관한 연구 : Mannose Binding Lectin 유전자 다형성 (Innate Immunity and Genetic Susceptibility to Severe Respiratory Syncytial Virus Infection : Lack of an Association with Mannose Binding Lectin Gene Polymorphism)

  • 최은화;김희섭;윤보영;최승은;나송이;김동호;박기원;이환종
    • Pediatric Infection and Vaccine
    • /
    • 제13권1호
    • /
    • pp.63-70
    • /
    • 2006
  • 목 적 : 본 연구는 어린 연령의 소아에서 선천성 면역력의 중요한 인자인 Mannose Binding Lectin(MBL2) 유전자의 다형성 및 일배체형의 분포를 심한 respiratory syncytial virus(RSV) 감염증 환자군과 정상대조군에서 분석함으로써, MBL2 유전자의 다양성이 소아 RSV 감염증의 발생과 예후에 기여하는지를 밝히고자 하였다. 방 법 : 1993년부터 2000년까지 7년 동안 서울대학교 어린이병원 소아과에서 RSV 감염증으로 치료받은 심한 RSV 감염증 환아 99명을 환자군, 건강한 성인 224명을 대조군으로 선정하였다. 유전형 분석은 선천성 면역의 중추적 역할을 하는 MBL2 유전자의 promoter -221 X/Y와 exon 1의 구조 변이의 분포를 환자대조군에서 비교하여 분석하였다. 결 과 : 환자군 99명의 중앙 연령은 9.5개월로, 6개월 미만 48명(49%), 6~24개월 사이 39명(39%), 그리고 24개월 이상이 12명(12%)이었다. 남아는 58명(59%)이었다. 환자군에서 MBL2 대립유전자 B다형성의 빈도는 유전형 AA 60(61%), 이형접합 AB 34(34%), 그리고 유전형 BB 5(5%)로 나타났다. 환자군의 promoter -221 X/Y 유전형의 분포는 유전형 YY 84(85%), 이형접합 XY 15(15%)이었으며, 유전형 XX는 발견되지 않았다. Exon 1의 구조 변이와 promoter 변이 모두 환자군과 대조군간에 차이가 없었다. MBL2 일배체형의 분포에도 두 군간에 차이가 없었다. 결 론 : 본 연구 결과, 한국인 소아에서 MBL2 유전자의 다형성과 일배체형이 심한 RSV 감염증에 기여하는 예후 인자임을 밝히지 못하였다. 향후 전향적으로 수집한 더 많은 수의 환자군과 적절한 대조군을 통한 연구가 시행되어야 할 것으로 생각한다.

  • PDF

참담치(Mytilus coruscus) 혈구(hemocyte) 유래 항균 펩타이드 mytilin B의 정제 및 특성 분석 (Mytilin B, an Antimicrobial Peptide from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus : Isolation, Purification, and Characterization)

  • 이민정;오륜경;김영옥;남보혜;공희정;김주원;박중연;서정길;김동균
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1301-1315
    • /
    • 2018
  • 참담치(Mytilus coruscus)의 혈구 유래의 항균 펩타이드를 역상 column들을 사용한 reversed-phase high-performance liquid chromatography (RP-HPLC)로 분리 및 정제하였다. 정제된 펩타이드는 matrix-assisted laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS)를 통해 분자량이 4041.866 Da으로 밝혀졌으며 Edman degradation법을 통해 25개의 N-말단 서열을 확보하였다. 이는 참담치의 mytilin B precursor와 100%, mytilin 8 precursor, mytilin 4 precursor와 96% 일치하였다. 또한 103개의 아미노산 서열을 코딩하고 있는 312 bp의 open-reading frame (ORF)을 밝혔으며 이는 참담치의 mytilin B precursor와 100% 일치하였다. 밝혀진 분자량과 아미노산 서열을 바탕으로 C-말단 alanine 잔기의 유무에 따라 2개의 펩타이드를 합성하였으며 이는 mytilin B1과 B2라고 명명하였다. 이들은 그람 양성 균주 Bacillus cereus, Streptococcus parauberis [minimal effective concentrations, MECs $41.6-89.7{\mu}g/ml$], 그람 음성 균주 Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Pseudomonas aeruginosa, Vibrio ichthyoenteri [MECs $7.4-39.5{\mu}g/ml$] 그리고 진균류인 Candida albicans [MECs $26.0-31.8{\mu}g/ml$]에 항균활성을 나타냈다. 본 연구 결과, 참담치 혈구 유래 mytilin B1과 mytilin B2는 넓은 항균 스펙트럼을 가지고 열과 염분에 대한 안정성이 높으며 용혈현상과 세포독성은 나타나지 않았다. 이러한 특성은 기능성 사료첨가제 및 항생제 대체제로써 충분히 안정적인 역할을 할 뿐만 아니라 추후 mytilin의 구조적 중요성과 참담치의 면역학적 측면에서 다양한 자료를 제시할 것으로 사료된다.

Carrageenan과 degraded carrageenan의 면역 보강제로서의 효능 평가 (Evaluating the Immunological Adjuvant Activities of Carrageenan and Degraded Carrageenan)

  • 박지훈;최태생
    • 생명과학회지
    • /
    • 제28권9호
    • /
    • pp.1076-1080
    • /
    • 2018
  • Carrageena은 전세계적으로 안전한 식품첨가물로 승인되어 오랜 기간 다양한 식품, 기타 가공품에 사용되어지고 있다. 다른 한편으로, 이 Carrageenan은 동물 실험에서 염증 유도 물질로 확인되어 염증 유발 실험에 현재까지도 매우 빈번히 사용 되고 있다. 또한 이 Carrageenan을 고온과 강산에서 처리하여 부분적으로 분해한 degraded Carrageenan은 염증 유도 능이 Carrageenan 보다 더 강한 것으로 알려져 있다. 면역 보강제의 중요한 특성 가운데 하나는 선천면역(대표적으로 염증반응)의 활성화 인 것이 잘 알려져 있다. 그러나 현재까지 Carrageenan이나 degraded Carrageenan의 면역 보강제로서의 효과에 관하여 상세한 비교 연구는 수행되어 지지 않았다. 본 연구의 목적은 Carrageenan과 degraded Carrageenan의 면역 보강제로서의 효과를 비교 분석하는데 있다. 실험 동물은 마우스를 사용하였으며, 난 알부민을 항원으로, 피하면역을 수행하여 각각의 면역 보강제 효과를 항체 형성 정도로 조사하였다. Carrageenan이나 degraded Carrageenan 모두 항원 단독으로 면역한 것과 비교할 때 유의적으로 높은 IgG 생성 능을 보였다. 추가적으로 항원 특이적 IgG1과 IgG2a를 조사한 결과, 이들 Carrageenan, degraded Carrageenan은 본 실험에서 양성 대조 군으로 사용한 보강제, Complete Freund's adjuvant와 비교 할 때 IgG2a 보다는 IgG1 생성 능이 높게 유도되는 것이 확인되었다. 이들 결과를 종합하면 염증 유발 능이 보다 강한 degraded carrageenan의 면역 보강제 효과는 carrageenan과 유사한 정도로 확인되었으며, 이들 모두 IgG2 보다는 IgG1 생성 효과가 강한 것으로 나타났다.