• Title/Summary/Keyword: innate immune response

검색결과 258건 처리시간 0.024초

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

Cytokine Reporter Mouse System for Screening Novel IL12/23 p40-inducing Compounds

  • Im, Wooseok;Kim, Hyojeong;Yun, Daesun;Seo, Sung-Yum;Park, Se-Ho;Locksley, Richard M.;Hong, Seokmann
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.288-296
    • /
    • 2005
  • Cytokines interleukin (IL) 12 and 23 play critical roles in linking innate and adaptive immune responses. They are members of heterodimeric cytokines, sharing a subunit p40. Although IL12/23 p40 is mainly induced in macrophages and dendritic cells (DCs) after stimulation with microbial Toll-like receptor ligands, methods to monitor the cells that produce IL12/23 p40 in vivo are limited. Recently, the mouse model to track p40-expressing cells with fluorescent reporter, yellow fluorescent protein, has been developed. Macrophages and DCs from these mice faithfully reported p40 induction using the fluorescent marker. Here we took advantage of these reporter mice to screen bio-compounds for p40-inducing activity. After screening hundreds of compounds, we found several extracts inducing IL12/23 p40 gene expression. Treatment of DCs with these extracts induced the expression of MHC class II and co-stimulatory molecules, which implies that these might be useful as adjuvants. Next, the in vivo target immune cells of candidate compounds were examined. The reporter system can be useful to identify cells producing IL12 or IL23 in vivo as well as in vitro. Thus, our cytokine reporter system proved to be a valuable reagent for screening for immunostimulatory molecules and identification of target cells in vivo.

Dendritic Cell-Mediated Mechanisms Triggered by LT-IIa-B5, a Mucosal Adjuvant Derived from a Type II Heat-Labile Enterotoxin of Escherichia coli

  • Lee, Chang Hoon;Hajishengallis, George;Connell, Terry D.
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.709-717
    • /
    • 2017
  • Mucosal tissues are the initial site through which most pathogens invade. As such, vaccines and adjuvants that modulate mucosal immune functions have emerged as important agents for disease prevention. Herein, we investigated the immunomodulatory mechanisms of the B subunit of Escherichia coli heat-labile enterotoxin type IIa ($LT-IIa-B_5$), a potent non-toxic mucosal adjuvant. Alternations in gene expression in response to $LT-IIa-B_5$ were identified using a genome-wide transcriptional microarray that focused on dendritic cells (DC), a type of cell that broadly orchestrates adaptive and innate immune responses. We found that $LT-IIa-B_5$ enhanced the homing capacity of DC into the lymph nodes and selectively regulated transcription of pro-inflammatory cytokines, chemokines, and cytokine receptors. These data are consistent with a model in which directional activation and differentiation of immune cells by $LT-IIa-B_5$ serve as a critical mechanism whereby this potent adjuvant amplifies mucosal immunity to co-administered antigens.

COVID-19 팬데믹과 식품의 면역조절 기능 (COVID-19 pandemic and the immune regulatory function of foods)

  • 김근동;이소영;신희순
    • 식품과학과 산업
    • /
    • 제55권3호
    • /
    • pp.244-263
    • /
    • 2022
  • Coronavirus, known as one of the causes of colds including mild upper respiratory tract disease in humans, has mutated into the infectious severe disease, COVID-19 through SARS and MERS. The mortality and symptoms of COVID-19 are related to the ability to regulate innate immunity, which acts as the first barrier against microorganisms and viruses. During the COVID-19 pandemic, the demand for food that helps to strengthen immunity is rapidly increasing. Functional foods promote general health and alleviate the risk of disease symptoms by activating multiple biological functions. A recent, there is an interest in discovering functional substances that can induce enhancement of immunity and prevent viral infection as well as relieve disease symptoms. Therefore, this article focus to understand the concept of immune response and highlights the recent status of functional foods and research trends that can help prevent and treat viral infections by inducing the enhancement of immune function.

Signaling Pathways Controlling Microglia Chemotaxis

  • Fan, Yang;Xie, Lirui;Chung, Chang Y.
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.163-168
    • /
    • 2017
  • Microglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain's innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.

Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice

  • Im, Young Bin;Park, Woo Bin;Jung, Myunghwan;Kim, Suk;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1132-1139
    • /
    • 2016
  • Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.

Maqui Berry Extract Activates Dendritic Cells Maturation by Increasing the Levels of Co-stimulatory Molecules and IL-12 Production

  • Ye Eun Lim;Inae Jung;Mi Eun Kim;Jun Sik Lee
    • 통합자연과학논문집
    • /
    • 제17권2호
    • /
    • pp.59-65
    • /
    • 2024
  • Dendritic cells play a very important role in the immune response as antigen-presenting cells that are critical for initiating both innate and acquired immunity. They recognize, process and present foreign antigens to other key immune cells to trigger and regulate the immune response. The ability to activate these dendritic cells can be used as a treatment for various immune diseases. Maqui berry has been reported to have anticancer, antibacterial and anti-inflammatory properties. However, its effect on the activity of dendritic cells has not been studied. In this study, we investigated the efficacy of maqui berry extract in modulating dendritic cell activity. Treatment of dendritic cells with maqui berry extract induced the costimulatory molecules CD80, CD86, and MHC class I and II in a concentration-dependent manner. Furthermore, the antigen-presenting capacity of dendritic cells was inhibited, which confirms their ability to present antigens, and the production of Interleukin (IL)-12, which is important for dendritic cell activity, was increased. These results indicated that Maqui berry extract activates dendritic cells maturation by inducing the production of co-stimulatory molecules and IL-12. These results suggest that maqui berry extract may act as an effective adjuvant to enhance dendritic cell-based immune responses.

Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation

  • Kim, Su Min;Ha, Ji Sun;Han, A Reum;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • 제52권10호
    • /
    • pp.613-618
    • /
    • 2019
  • Microglial cells are known as the main immune cells in the central nervous system, both regulating its immune response and maintaining its homeostasis. Furthermore, the antioxidant ${\alpha}-lipoic$ acid (LA) is a recognized therapeutic drug for diabetes because it can easily invade the blood-brain barrier. This study investigated the effect of ${\alpha}-LA$ on the inflammatory response in lipopolysaccharide (LPS)-treated BV-2 microglial cells. Our results revealed that ${\alpha}-LA$ significantly attenuated several inflammatory responses in BV-2 microglial cells, including pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6, and other cytotoxic molecules, such as nitric oxide and reactive oxygen species. In addition, ${\alpha}-LA$ inhibited the LPS-induced phosphorylation of ERK and p38 and its pharmacological properties were facilitated via the inhibition of the nuclear factor kappa B signaling pathway. Moreover, ${\alpha}-LA$ suppressed the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, multiprotein complexes consisting of NLRP3 and caspase-1, which are involved in the innate immune response. Finally, ${\alpha}-LA$ decreased the genes accountable for the M1 phenotype, $IL-1{\beta}$ and ICAM1, whereas it increased the genes responsible for the M2 phenotype, MRC1 and ARG1. These findings suggest that ${\alpha}-LA$ alleviates the neuroinflammatory response by regulating microglial polarization.

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2008년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Chikungunya Virus-Encoded nsP2, E2 and E1 Strongly Antagonize the Interferon-β Signaling Pathway

  • Bae, Sojung;Lee, Jeong Yoon;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1852-1859
    • /
    • 2019
  • Chikungunya virus (CHIKV) is a single-stranded positive-sense RNA virus, belonging to the genus Alphavirus of the Togaviridae family. It causes multiple symptoms, including headache, fever, severe joint and muscle pain, and arthralgia. Since CHIKV was first isolated in Tanzania in 1952, there have been multiple outbreaks of chikungunya fever. However, its pathogenesis and mechanisms of viral immune evasion have been poorly understood. In addition, the exact roles of individual CHIKV genes on the host innate immune response remain largely unknown. To investigate if CHIKV-encoded genes modulate the type I interferon (IFN) response, each and every CHIKV gene was screened for its effects on the induction of the IFN-β promoter. Here we report that CHIKV nsP2, E2 and E1 strongly suppressed activation of the IFN-β promoter induced by the MDA5/RIG-I receptor signaling pathway, suggesting that nsP2, E2, and E1 are the major antagonists against induction of IFN-β. Delineation of underlying mechanisms of CHIKV-mediated inhibition of the IFN-β pathway may help develop virus-specific therapeutics and vaccines.