• 제목/요약/키워드: innate immune

검색결과 543건 처리시간 0.021초

Transcriptional analysis of olive flounder lectins in response to VHSV infection

  • Lee, Young Mee;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Kim, Woo-Jin;Kim, Kyung-Kil
    • 한국어병학회지
    • /
    • 제29권1호
    • /
    • pp.13-23
    • /
    • 2016
  • Lectins play significant roles in the innate immune responses through binding to pathogen-associated molecular patterns (PAMPs) on the surfaces of microorganisms. In the present study, tissue distribution and expression analysis of olive flounder lectins were performed after viral hemorrhagic septicemia virus (VHSV) challenge. Fish egg lectin and serum lectin were found to be predominantly expressed in the gills and liver, these results indicate that the transcript expression of olive flounder lectins is concentrated in immune-related tissues. Following a VHSV challenge, an overall increase in the transcript levels of the genes was observed and the expression patterns were distinctly divided into early and later responses during VHSV infection. In conclusion, olive flounder lectins are specifically expressed in immune-related organs and induced in both the immediate and long-lasting immune responses to VHSV in the olive flounder. These results indicate that lectins may be play important roles in the host defense mechanism and involved in the innate and adaptive immune response to viruses in fish.

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • 제8권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

Pattern-Recognition Receptor Signaling Initiated From Extracellular, Membrane, and Cytoplasmic Space

  • Lee, Myeong Sup;Kim, Young-Joon
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2007
  • Invading pathogens are recognized by diverse germline-encoded pattern-recognition receptors (PRRs) which are distributed in three different cellular compartments: extracellular, membrane, and cytoplasmic. In mammals, the major extracellular PRRs such as complements may first encounter the invading pathogens and opsonize them for clearance by phagocytosis which is mediated by membrane-associated phagocytic receptors including complement receptors. The major membrane-associated PRRs, Toll-like receptors, recognize diverse pathogens and generate inflammatory signals to coordinate innate immune responses and shape adaptive immune responses. Furthemore, certain membrane-associated PRRs such as Dectin-1 can mediate phagocytosis and also induce inflammatory response. When these more forefront detection systems are avoided by the pathogens, cytoplasmic PRRs may play major roles. Cytoplasmic caspase-recruiting domain (CARD) helicases such as retinoic acid-inducible protein I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5), mediate antiviral immunity by inducing the production of type I interferons. Certain members of nucleotide-binding oligomerization domain (NOD)-like receptors such as NALP3 present in the cytosol form inflammasomes to induce inflammatory responses upon ligand recognition. Thus, diverse families of PRRs coordinately mediate immune responses against diverse types of pathogens.

교감단(交感丹)의 투여가 STRESS에 의한 면역반응의 억제에 미치는 영향 (Effect of Gyogamdan Administration on the Stress-Induced Immunosuppression in the Mouse)

  • 황현순;류영수
    • 동의신경정신과학회지
    • /
    • 제8권2호
    • /
    • pp.13-24
    • /
    • 1997
  • This study was done to know the effects of the water extracts of Gyogamdan(GGD) on the function of macrophages, the most important cells of the innate immune system, and the rosette forming ability of splenocytes in the mouse under stress. The effects of GGD on the immunosuppression induced by noise stress are as follows. 1. Administration of GGD water extracts normalized the bo요 weight which might be decreased by noise stress. 2. Administration of GGD water extracts increased the production of the such reactive oxygen intermediates as superoxide and hydrogen peroxide from macrophsges in vivo & in vitro which were decreased by noise stress. 3. Administration of GGS water extracts did not affect the production of reactive nitrogen intermediates. 4. Administration of GGD water extracts increased the rosette forming ability of splenocytes which was decreased by noise stress. The above effects of GGD might be useful for the treatment of stress-induced infections diseases which could be caused by the suppression of immune responeses which are initiated by the functions of macrophages of the innate immune system.

  • PDF

Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

  • Huh, Jin Young;Park, Yoon Jeong;Ham, Mira;Kim, Jae Bum
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.365-371
    • /
    • 2014
  • Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.226-232
    • /
    • 2021
  • Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFNmediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.

IFN-γ: A Crucial Player in the Fight Against HBV Infection?

  • Marine Laure Bettina Hillaire;Philip Lawrence;Brice Lagrange
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.30.1-30.18
    • /
    • 2023
  • About 0.8 million people die because of hepatitis B virus (HBV) infection each year. In around 5% of infected adults, the immune system is ineffective in countering HBV infection, leading to chronic hepatitis B (CHB). CHB is associated with hepatocellular carcinoma, which can lead to patient death. Unfortunately, although current treatments against CHB allow control of HBV infection, they are unable to achieve complete eradication of the virus. Cytokines of the IFN family represent part of the innate immune system and are key players in virus elimination. IFN secretion induces the expression of interferon stimulated genes, producing proteins that have antiviral properties and that are essential to cell-autonomous immunity. IFN-α is commonly used as a therapeutic approach for CHB. In addition, IFN-γ has been identified as the main IFN family member responsible for HBV eradication during acute infection. In this review, we summarize the key evidence gained from cellular or animal models of HBV replication or infection concerning the potential anti-HBV roles of IFN-γ with a particular focus on some IFN-γ-inducible genes.

타고난 면역반응이 활성화된 육계병아리의 생산성과 혈액 항산화계에 미치는 사료중 미역제품 수준의 영향

  • 이혜정;임진택;박인경;최도열;최준영;고태송
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2004년도 제21차 정기총회 및 학술발표회
    • /
    • pp.28-30
    • /
    • 2004
  • 사료중 미역제품 수준이 타고난 면역반응을 활성화한 육계병아리의 생산성과 항산화계에 미치는 영향을 조사하였다. LPS를 주입하여 타고난 면역반응을 활성화하였다. 미역제품 2.0 % 사료는 뇨산태 질소의 배설량을 감소시켜 질소밸런스와 사료효율을 유의하게 증가시켰다(P<0.05), 미역제품 1.0 % 사료는 타고난 면역 활성화시의 생산성 감소를 완화시켰다. 미역제품 2.0 % 사료는 혈장 SOD의 활성을 낮추었다. 그러나 타고난 면역의 활성화는 적혈구 세포액의 SOD 활성과 혈장 peroxide 수준을 유의하게 높였다. 미역제품 사료는 과산화물분해효소의 활성을 유의하게(P<0.05)높였다. 본 성적은 육계 병아리에서 미역제품 2.0 % 사료는 단백질 분해량을 감소시킴으로써 단백질 축적량을 높여서 육계병아리의 생산성을 증가시키는 것을 나타내었다. 그리고 미역제품 2.0 % 사료 급여시 급성기 반응 및 정상 병아리의 항산화계효소 활성 감소, 생산성의 증가는 혈액 항산화계의 변화와 연계된다는 것을 나타내었다.

  • PDF

Edwardsiella tarda의 특이 Bacteriophage와 Bacillus subtilis가 혼합된 사료급이가 나일 틸라피아(Oreochromis niloticus)의 선천적 면역반응과 항균효과에 미치는 영향 (The Effects of a Dietary Edwardsiella tarda Specific Bacteriophage and Bacillus subtilis Mixture on Innate Immune Responses and Antibacterial Activity of Nile tilapia Oreochromis niloticus)

  • 백민석;황요셉;최상훈
    • 한국수산과학회지
    • /
    • 제47권1호
    • /
    • pp.23-30
    • /
    • 2014
  • The present study investigated the effects of dietary Edwardsiella tarda (E. tarda) specific bacteriophage (phage) and Bacillus subtilis (B. subtilis) mixture on innate immune responses and antibacterial activity of Nile tilapia, Oreochromis niloticus. In a dietary experiment, tilapia were fed the control diet (C), a phage-only supplemented diet (P), a B. subtilis only supplemented diet (B), or a B. subtilis and phage mixed diet (B+P). A respiratory burst and significant increase in lysozyme activity (P<0.05) were noted in the B+P group, as compared to other groups after 4 days of feeding. The B group showed a significant (P<0.05) increase in respiratory burst and lysozyme activity versus the C and P groups, whereas no significant increases (P<0.05) were observed in the P and C groups. $ACH_{50}$ was significantly up-regulated in the B+P group versus other groups after 8 days of feeding (P<0.05). In vivo antibacterial activity was significantly enhanced in the B+P fed group, as compared to other groups (P<0.05) after 7 days of E. tarda challenge. A significant (P<0.05) increase in antibacterial activity was seen in the B group, as compared to C or P groups after 14 days of feeding. These results suggest that a B. subtilis and phage mixture could be utilized as an alternative to antibiotics in the control of fish diseases caused by E. tarda.