DOI QR코드

DOI QR Code

Transcriptional analysis of olive flounder lectins in response to VHSV infection

  • Lee, Young Mee (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Noh, Jae Koo (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Hyun Chul (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Park, Choul-Ji (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Park, Jong-Won (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Noh, Gyeong Eon (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Woo-Jin (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Kyung-Kil (Genetics and Breeding Research Center, National Institute of Fisheries Science (NIFS))
  • Received : 2016.03.04
  • Accepted : 2016.05.01
  • Published : 2016.04.30

Abstract

Lectins play significant roles in the innate immune responses through binding to pathogen-associated molecular patterns (PAMPs) on the surfaces of microorganisms. In the present study, tissue distribution and expression analysis of olive flounder lectins were performed after viral hemorrhagic septicemia virus (VHSV) challenge. Fish egg lectin and serum lectin were found to be predominantly expressed in the gills and liver, these results indicate that the transcript expression of olive flounder lectins is concentrated in immune-related tissues. Following a VHSV challenge, an overall increase in the transcript levels of the genes was observed and the expression patterns were distinctly divided into early and later responses during VHSV infection. In conclusion, olive flounder lectins are specifically expressed in immune-related organs and induced in both the immediate and long-lasting immune responses to VHSV in the olive flounder. These results indicate that lectins may be play important roles in the host defense mechanism and involved in the innate and adaptive immune response to viruses in fish.

Keywords

References

  1. Arason, G.J.: Lectins as defence molecules in vertebrates and invertebrates. Fish. Shellfish Immunol., 6: 277-289, 1996. https://doi.org/10.1006/fsim.1996.0029
  2. Argayosa, A.M., Lee, Y.C.: Identification of (L)-fucosebinding proteins from the Nile tilapia (Oreochromis niloticus L.) serum. Fish. Shellfish Immunol., 27: 478-485, 2009. https://doi.org/10.1016/j.fsi.2009.06.012
  3. Avunje, S., Kim, W.S., Oh, M.J., Choi, I., Jung, S.J.: Temperature-dependent viral replication and antiviral apoptotic response in viral haemorrhagic septicaemia virus (VHSV)-infected olive flounder (Paralichthys olivaceus). Fish. Shellfish Immunol., 32: 1162-1170, 2012. https://doi.org/10.1016/j.fsi.2012.03.025
  4. den Dunnen, J., Gringhuis, S.I., Geijtenbeek, T.B.: Dusting the sugar fingerprint: C-type lectin signaling in adaptive immunity. Immunol. Lett., 128: 12-16, 2010. https://doi.org/10.1016/j.imlet.2009.09.008
  5. Fock, W.L., Chen, C.L., Lam, T.J., Sin, Y.M.: Isolation and characterisation of a serum lectin from blue gourami, Trichogaster trichopterus (Pallus). Fish. Shellfish Immunol., 10: 489-504, 2000. https://doi.org/10.1006/fsim.2000.0262
  6. Fock, W.L., Chen, C.L., Lam, T.J., Sin, Y.M.: Roles of an endogenous serum lectin in the immune protection of blue gourami, Trichogaster trichopterus (Pallus) against Aeromonas hydrophila. Fish. Shellfish Immunol., 11: 101-113, 2001. https://doi.org/10.1006/fsim.2000.0297
  7. Fujita, T., Matsushita, M., Endo, Y.: The lectin-complement pathway its role in innate immunity and evolution. Immunol. Rev., 198: 185-202, 2004. https://doi.org/10.1111/j.0105-2896.2004.0123.x
  8. Gao, L., He, C., Liu, X., Su, H., Gao, X., Li, Y., Liu, W.: The Innate Immune-Related Genes in Catfish. Int. J. Mol. Sci. 13: 14172-14202, 2012. https://doi.org/10.3390/ijms131114172
  9. Gasparini, F., Franchi, N., Spolaore, B., Ballarin, L.: Novel rhamnose-binding lectins from the colonial ascidian Botryllus schlosseri. Dev. Comp. Immunol., 32: 1177-1191, 2008. https://doi.org/10.1016/j.dci.2008.03.006
  10. Hatanaka, A., Umeda, N., Hirazawa, N.: Characterization of highly concentrated serum lectins in spotted halibut Verasper variegatus. Parasitology, 135: 359-369, 2008.
  11. Hoffmann, J.A., Kafatose, F.C., Janeway, C.A., Ezekowitz, R.A.: Phylogenetic perspectives in innate immunity. Science, 284: 1313-1318, 1999. https://doi.org/10.1126/science.284.5418.1313
  12. Holmskov, U., Thiel, S., Jensenius, J.C.: Collections and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol., 21: 547-587, 2003. https://doi.org/10.1146/annurev.immunol.21.120601.140954
  13. Jang, M.S., Lee, Y.M., Yang, H., Lee, J.H., Noh, J.K., Kim, H.C., Park, C.J., Park, J.W., Hwang, I.J., Kim, S.Y.: Gene analysis of galectin-1, innate immune response gene, in olive flounder Paralichthys olivaceus at different developmental stage. J. Fish Pathol., 26: 255-263, 2013. https://doi.org/10.7847/jfp.2013.26.3.255
  14. Kasai, K., Hirabayashi, J.: Galectins: a family of animal lectins that decipher glycocodes. J. Biochem., 119: 1-8, 1996. https://doi.org/10.1093/oxfordjournals.jbchem.a021192
  15. Kim, B.S., Nam, B.H., Kim, J.W., Park, H.J., Song, J.H., Park, C.I.: Molecular characterisation and expression analysis of a fish-egg lectin in rock bream, and its response to bacterial or viral infection. Fish. Shellfish Immunol., 31: 1201-1207, 2011. https://doi.org/10.1016/j.fsi.2011.10.024
  16. Kim, Y.J., Borsig, L., Varki, N.M., Varki, A.: P-selectin deficiency attenuates tumor growth and metastasis. Proc. Natl. Acad. Sci. U. S. A., 95: 9325-9330, 1998. https://doi.org/10.1073/pnas.95.16.9325
  17. Koizumi, N., Imai, Y., Morozumi, A., Imamura, M., Kadotani, T., Yaoi, K., Iwahana, H., Sato, R.: Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte mediated defense reaction against gram-negative bacteria. J. Insect. Physiol., 45: 853-859, 1999. https://doi.org/10.1016/S0022-1910(99)00069-4
  18. Kondo, H., Yeu Tzeh, A.G., Hirono, I., Aoki, T.: Identification of a novel C-type lectin gene in Japanese flounder, Paralichthys olivaceus. Fish. Shellfish Immunol., 23: 1089-1094, 2007. https://doi.org/10.1016/j.fsi.2007.05.002
  19. Kong, H.J., Hong, G.E., Kim, W.J., Kim, Y.O., Nam, B.H., Lee, C.H., Do, J.W., Lee, J.H., Lee, S.J., Kim, K.K.: Cloning and characterization of hypusine-containing protein eIF5A from the olive flounder Paralichthys olivaceus. Comp. Biochem. Physiol. Part B, 153: 281-287, 2009. https://doi.org/10.1016/j.cbpb.2009.03.012
  20. Kong, H.J., Kim, W.J., Kim, H.S., Lee, Y.J., Kim, C.H., Nam, B.H., Kim, Y.O., Kim, D.G., Lee, S.J., Lim, S.G., Kim, B.S.: Molecular characterization of a tandem-repeat galectin-9 (RuGlec9) from Korean rose bitterling (Rhodeus uyekii). Fish. Shellfish Immunol., 32: 939-944, 2012. https://doi.org/10.1016/j.fsi.2012.02.003
  21. Liu, F., Li, J., Fu, J., Shen, Y., Xu, X.: Two novel homologs of simple C-type lectin in grass carp (Ctenopharyngodon idellus): Potential role in immune response to bacteria. Fish. Shellfish Immunol., 31: 765-773, 2011. https://doi.org/10.1016/j.fsi.2011.07.014
  22. Liu, S., Hu, G., Sun, C., Zhang, S.: Anti-viral activity of galectin-1 from flounder Paralichthys olivaceus. Fish. Shellfish Immunol., 34: 1463-1469, 2013. https://doi.org/10.1016/j.fsi.2013.03.354
  23. Magnadottir, B.: Innate immunity of fish (overview). Fish. Shellfish Immunol., 20:137-151. 2006. https://doi.org/10.1016/j.fsi.2004.09.006
  24. McGreal, E.P., Martinez-Pomares, L., Gordon, S.: Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol. Immunol., 41: 1109-1121, 2004. https://doi.org/10.1016/j.molimm.2004.06.013
  25. Ni, Y., Tizard, I.: Lectine-carbohydrate interaction in the immune system. Vet. Immunol. Immunopathol., 55: 205-223, 1996. https://doi.org/10.1016/S0165-2427(96)05718-2
  26. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45, 2001. https://doi.org/10.1093/nar/29.9.e45
  27. Poisa-Beiro, L., Dios, S., Ahmed, H., Vasta, G.R., Martinez-Lopez, A., Estepa, A., Alonso-Gutierrez, J., Figueras, A., Novoa, B.: Nodavirus infection of sea bass (Dicentrarchus labrax) induces up-regulation of galectin-1 expression with potential anti-inflammatory activity. J. Immunol., 183: 6600-6611, 2009. https://doi.org/10.4049/jimmunol.0801726
  28. Rajan, B., Kiron, V., Fernandes, J.M., Brinchmann, M.F.: Localization and functional properties of two galectin-1 proteins in Atlantic cod (Gadus morhua) mucosal tissues. Dev. Comp. Immunol., 40: 83-93, 2013. https://doi.org/10.1016/j.dci.2013.02.002
  29. Savan, R., Endo, M., Sakai, M.: Characterization of a new C-type lectin from common carp Cyprinus carpio. Mol. Immunol., 41: 891-899, 2004. https://doi.org/10.1016/j.molimm.2004.04.026
  30. van Vliet, S.J., Garcia-Vallejo, J.J., van Kooyk, Y.: Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses. Immunol. Cell Biol., 86: 580-587, 2008. https://doi.org/10.1038/icb.2008.55
  31. Vasta, G.R., Ahmed, H., Fink, N.E., Elola, M.T., Marsh, A.G., Snowden, A., Odom, E.W.: Animal lectins as self/non-self recognition molecules. Biochemical and genetic approaches to understanding their biological roles and evolution. Ann. N. Y. Acad. Sci., 712: 55-73, 1994. https://doi.org/10.1111/j.1749-6632.1994.tb33562.x
  32. Vasta, G.R., Ahmed, H., Du, S., Henrikson, D.: Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj. J., 21: 503-521, 2004. https://doi.org/10.1007/s10719-004-5541-7
  33. Wassaman, P.M., Bleil, J.D., Florman, H.M., Greve, J.M., Roller, R.J., Salzmann, G.S.: Nature of the mouse egg's receptor for sperm. Adv. Exp. Med. Biol., 207: 55-77, 1986.
  34. Wei, J., Xu, D., Zhou, J., Cui, H., Yan, Y., Ouyang, Z., Gong, J., Huang, Y., Huang, X., Qin, Q.: Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper, Epinephelus coioides. Fish. Shellfish Immunol., 28: 178-186, 2010. https://doi.org/10.1016/j.fsi.2009.10.020
  35. Yang, H., Yu, S., Chai, Y., Liu, Y., Zhang, Q., Ding, X., Zhu, Q.: A galectin from roughskin sculpin, Trachidermus fasciatus: Molecular cloning and characterization. Fish. Shellfish Immunol., 35: 815-824, 2013. https://doi.org/10.1016/j.fsi.2013.06.015
  36. Yu, S., Yang, H., Chai, Y., Liu, Y., Zhang, Q., Ding, X., Zhu, Q.: Molecular cloning and characterization of a C-type lectin in roughskin sculpin (Trachidermus fasciatus). Fish. Shellfish Immunol., 34: 582-592, 2013. https://doi.org/10.1016/j.fsi.2012.11.033
  37. Zhang, M., Hu, Y.H., Sun, L.: Identification and molecular analysis of a novel C-type lectin from Scophthalmus maximus. Fish. Shellfish Immunol., 29: 82-88, 2010. https://doi.org/10.1016/j.fsi.2010.02.023
  38. Zheng, F., Asim, M., Lan, J., Zhao, L., Wei, S., Chen, N., Liu, X., Zhou, Y., Lin, L.: Molecular cloning and functional characterization of mannose receptor in zebra fish (Danio rerio) during infection with Aeromonas sobria. Int. J. Mol. Sci., 16: 10997-11012, 2015. https://doi.org/10.3390/ijms160510997
  39. Zhou, Z.H., Sun, L.: CsCTL1, a teleost C-type lectin that promotes antibacterial and antiviral immune defense in a manner that depends on the conserved EPN motif. Dev. Comp. Immunol., 50: 69-77, 2015. https://doi.org/10.1016/j.dci.2015.01.007
  40. Zhu, L.Y., Nie, L., Zhu, G., Xiang, L.X., Shao, J.Z.: Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts. Dev. Comp. Immunol., 39: 39-62, 2013. https://doi.org/10.1016/j.dci.2012.04.001

Cited by

  1. Gene expression profiles alteration after infection of virus, bacteria, and parasite in the Olive flounder ( Paralichthys olivaceus ) vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-36342-y