DOI QR코드

DOI QR Code

IFN-γ: A Crucial Player in the Fight Against HBV Infection?

  • Received : 2023.02.07
  • Accepted : 2023.05.21
  • Published : 2023.08.31

Abstract

About 0.8 million people die because of hepatitis B virus (HBV) infection each year. In around 5% of infected adults, the immune system is ineffective in countering HBV infection, leading to chronic hepatitis B (CHB). CHB is associated with hepatocellular carcinoma, which can lead to patient death. Unfortunately, although current treatments against CHB allow control of HBV infection, they are unable to achieve complete eradication of the virus. Cytokines of the IFN family represent part of the innate immune system and are key players in virus elimination. IFN secretion induces the expression of interferon stimulated genes, producing proteins that have antiviral properties and that are essential to cell-autonomous immunity. IFN-α is commonly used as a therapeutic approach for CHB. In addition, IFN-γ has been identified as the main IFN family member responsible for HBV eradication during acute infection. In this review, we summarize the key evidence gained from cellular or animal models of HBV replication or infection concerning the potential anti-HBV roles of IFN-γ with a particular focus on some IFN-γ-inducible genes.

Keywords

Acknowledgement

This work was supported by the unite de recherche Confluence: Sciences et Humanites (EA 1598), Universite Catholique de Lyon, Lyon, France. We thank Pr. Gormally for her support.

References

  1. World Health Organization. Global Progres Report on HIV, Viral Hepatitis and Sexually Transmitted Infections, 2021. Geneva: World Health Organization; 2021.
  2. Ye J, Chen J. Interferon and hepatitis B: current and future perspectives. Front Immunol 2021;12:733364.
  3. Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov 2019;18:827-844. https://doi.org/10.1038/s41573-019-0037-0
  4. Vaillant A. HBsAg, subviral particles, and their clearance in establishing a functional cure of chronic hepatitis B virus infection. ACS Infect Dis 2021;7:1351-1368. https://doi.org/10.1021/acsinfecdis.0c00638
  5. Vaillant A. Oligonucleotide-based therapies for chronic HBV infection: a primer on biochemistry, mechanisms and antiviral effects. Viruses 2022;14:2052.
  6. Ganchua SC, Paratala B, Iott C, Gane EJ, Yuen MF, Eley T, Sims K, Gray K, Antoniello D, Lam AM, et al. Reduction of hepatitis B surface antigen mediated by RNA interference therapeutic AB-729 in chronic hepatitis B patients is asociated with T cell activation and a decline in exhausted CD8 T cells. J Hepatol 2022;77:S851.
  7. Yuen MF, Heo J, Jang JW, Yoon JH, Kweon YO, Park SJ, Tami Y, You S, Yates P, Tao Y, et al. Safety, tolerability and antiviral activity of the antisense oligonucleotide bepirovirsen in patients with chronic hepatitis B: a phase 2 randomized controlled trial. Nat Med 2021;27:1725-1734. https://doi.org/10.1038/s41591-021-01513-4
  8. Beretta M, Mouquet H. Advances in human monoclonal antibody therapy for HBV infection. Curr Opin Virol 2022;53:101205.
  9. MacMicking JD. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat Rev Immunol 2012;12:367-382. https://doi.org/10.1038/nri3210
  10. Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol 2018;9:2061.
  11. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progresion and regresion: a review. Biomark Res 2020;8:49.
  12. Schoggins JW. Interferon-stimulated genes: what do they all do? Annu Rev Virol 2019;6:567-584. https://doi.org/10.1146/annurev-virology-092818-015756
  13. Wang J, Huang H, Liu Y, Chen R, Yan Y, Shi S, Xi J, Zou J, Yu G, Feng X, et al. HBV genome and life cycle. In: Tang H, ed. Hepatitis B Virus Infection. Vol. 1179. Advances in Experimental Medicine and Biology. Singapore: Springer Singapore; 2020. p.17-37.
  14. Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res 2020;182:104925.
  15. Li L. Asociation between the interferon-γ +874T/A polymorphism and susceptibility to hepatitis B virus infection: a meta-analysis. J Int Med Res 2020;48:300060520945511.
  16. Xu J, Zhan Q, Fan Y, Yu Y, Zeng Z. Human genetic susceptibility to hepatitis B virus infection. Infect Genet Evol 2021;87:104663.
  17. Schena FP, Cerullo G, Torres DD, Scolari F, Foramitti M, Amoroso A, Pirulli D, Floege J, Mertens PR, Zerres K, et al. Role of interferon-gamma gene polymorphisms in susceptibility to IgA nephropathy: a family-based asociation study. Eur J Hum Genet 2006;14:488-496. https://doi.org/10.1038/sj.ejhg.5201591
  18. Zhao J, Li Y, Jin L, Zhang S, Fan R, Sun Y, Zhou C, Shang Q, Li W, Zhang Z, et al. Natural killer cells are characterized by the concomitantly increased interferon-γ and cytotoxicity in acute resolved hepatitis B patients. PLoS One 2012;7:e49135.
  19. Ben Selma W, Laribi AB, Alibi S, Boukadida J. Asociation of an IFN-γ variant with susceptibility to chronic hepatitis B by the enhancement of HBV DNA replication. Cytokine 2021;143:155525.
  20. Dondeti MF, Abdelkhalek MS, El-Din Elezawy HM, Alsanie WF, Raafat BM, Gamal-Eldeen AM, Talaat RM. Asociation between interferon-gamma (IFN-γ) gene polymorphisms (+874A/T and +2109A/G), and susceptibility to hepatitis B viral infection (HBV). J Appl Biomed 2022;20:37-43. https://doi.org/10.32725/jab.2022.001
  21. Wang Q, Chang F, Li W. A single nucleotide polymorphism of the interferon-γ gene and susceptibility to hepatitis B virus-related cirrhosis: a randomized controlled trial. Int J Clin Exp Pathol 2018;11:4140-4146.
  22. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996;4:25-36. https://doi.org/10.1016/S1074-7613(00)80295-2
  23. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 2000;192:921-930. https://doi.org/10.1084/jem.192.7.921
  24. Webster GJ, Reignat S, Maini MK, Whalley SA, Ogg GS, King A, Brown D, Amlot PL, Williams R, Vergani D, et al. Incubation phase of acute hepatitis B in man: dynamic of cellular immune mechanisms. Hepatology 2000;32:1117-1124. https://doi.org/10.1053/jhep.2000.19324
  25. Fisicaro P, Valdatta C, Boni C, Masari M, Mori C, Zerbini A, Orlandini A, Sacchelli L, Misale G, Ferrari C. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 2009;58:974-982. https://doi.org/10.1136/gut.2008.163600
  26. Li Y, Wang JJ, Gao S, Liu Q, Bai J, Zhao XQ, Hao YH, Ding HH, Zhu F, Yang DL, et al. Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B. PLoS One 2014;9:e86927.
  27. Zhou Y, He Y, Chang Y, Peng X, Zhao R, Peng M, Hu P, Ren H, Chen M, Xu H. The characteristics of natural killer cells and T cells vary with the natural history of chronic hepatitis B in children. Front Pediatr 2021;9:736023.
  28. Gu Y, Lian Y, Zheng Q, Huang Z, Gu L, Bi Y, Li J, Huang Y, Wu Y, Chen L, et al. Asociation among cytokine profiles of innate and adaptive immune responses and clinical-virological features in untreated patients with chronic hepatitis B. BMC Infect Dis 2020;20:509.
  29. Yang Y, Han Q, Zhang C, Xiao M, Zhang J. Hepatitis B virus antigens impair NK cell function. Int Immunopharmacol 2016;38:291-297. https://doi.org/10.1016/j.intimp.2016.06.015
  30. Ma Q, Dong X, Liu S, Zhong T, Sun D, Zong L, Zhao C, Lu Q, Zhang M, Gao Y, et al. Hepatitis B e antigen induces NKG2A+ natural killer cell dysfunction via regulatory T cell-derived interleukin 10 in chronic hepatitis B virus infection. Front Cell Dev Biol 2020;8:421.
  31. De Pasquale C, Campana S, Barberi C, Sidoti Migliore G, Oliveri D, Lanza M, Musolino C, Raimondo G, Ferrone S, Pollicino T, et al. Human hepatitis B virus negatively impacts the protective immune crostalk between natural killer and dendritic cells. Hepatology 2021;74:550-565.
  32. Yang Z, Tang T, Wei X, Yang S, Tian Z. Type 1 innate lymphoid cells contribute to the pathogenesis of chronic hepatitis B. Innate Immun 2015;21:665-673. https://doi.org/10.1177/1753425915586074
  33. Thimme R, Wieland S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH, Chisari FV. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 2003;77:68-76. https://doi.org/10.1128/JVI.77.1.68-76.2003
  34. Wang H, Luo H, Wan X, Fu X, Mao Q, Xiang X, Zhou Y, He W, Zhang J, Guo Y, et al. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is asociated with liver damage and viral clearance in chronic HBV infection. J Hepatol 2020;72:45-56. https://doi.org/10.1016/j.jhep.2019.08.024
  35. Wieland SF, Spangenberg HC, Thimme R, Purcell RH, Chisari FV. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci U S A 2004;101:2129-2134. https://doi.org/10.1073/pnas.0308478100
  36. Xia Y, Stadler D, Lucifora J, Reisinger F, Webb D, Hosel M, Michler T, Wiskirchen K, Cheng X, Zhang K, et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 2016;150:194-205. https://doi.org/10.1053/j.gastro.2015.09.026
  37. Hayashi Y, Koike K. Interferon inhibits hepatitis B virus replication in a stable expresion system of transfected viral DNA. J Virol 1989;63:2936-2940. https://doi.org/10.1128/jvi.63.7.2936-2940.1989
  38. Nosaka T, Naito T, Matsuda H, Ohtani M, Hiramatsu K, Nemoto T, Nishizawa T, Okamoto H, Nakamoto Y. Molecular signature of hepatitis B virus regulation by interferon-γ in primary human hepatocytes. Hepatol Res 2020;50:292-302. https://doi.org/10.1111/hepr.13450
  39. Parvez MK, Sehgal D, Sarin SK, Basir SF, Jameel S. Inhibition of hepatitis B virus DNA replicative intermediate forms by recombinant interferon-γ. World J Gastroenterol 2006;12:3006-3014. https://doi.org/10.3748/wjg.v12.i19.3006
  40. Pasquetto V, Wieland SF, Uprichard SL, Tripodi M, Chisari FV. Cytokine-sensitive replication of hepatitis B virus in immortalized mouse hepatocyte cultures. J Virol 2002;76:5646-5653. https://doi.org/10.1128/JVI.76.11.5646-5653.2002
  41. Xu C, Guo H, Pan XB, Mao R, Yu W, Xu X, Wei L, Chang J, Block TM, Guo JT. Interferons accelerate decay of replication-competent nucleocapsids of hepatitis B virus. J Virol 2010;84:9332-9340. https://doi.org/10.1128/JVI.00918-10
  42. McClary H, Koch R, Chisari FV, Guidotti LG. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines. J Virol 2000;74:2255-2264. https://doi.org/10.1128/JVI.74.5.2255-2264.2000
  43. Mao R, Zhang J, Jiang D, Cai D, Levy JM, Cuconati A, Block TM, Guo JT, Guo H. Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J Virol 2011;85:1048-1057. https://doi.org/10.1128/JVI.01998-10
  44. Zhang Z, Trippler M, Real CI, Werner M, Luo X, Schefczyk S, Kemper T, Anastasiou OE, Ladiges Y, Treckmann J, et al. Hepatitis B virus particles activate Toll-like receptor 2 signaling initially upon infection of primary human hepatocytes. Hepatology 2020;72:829-844. https://doi.org/10.1002/hep.31112
  45. Huang B, Qi ZT, Xu Z, Nie P. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: glimpse of the diversification in evolution. BMC Immunol 2010;11:22.
  46. Yamane D, Feng H, Rivera-Serrano EE, Selitsky SR, Hirai-Yuki A, Das A, McKnight KL, Misumi I, Hensley L, Lovell W, et al. Basal expresion of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat Microbiol 2019;4:1096-1104. https://doi.org/10.1038/s41564-019-0425-6
  47. Cesaro T, Michiels T. Inhibition of PKR by viruses. Front Microbiol 2021;12:757238.
  48. Gusho E, Baskar D, Banerjee S. New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling. Cytokine 2020;133:153847.
  49. Guidotti LG, Morris A, Mendez H, Koch R, Silverman RH, Williams BR, Chisari FV. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol 2002;76:2617-2621. https://doi.org/10.1128/JVI.76.6.2617-2621.2002
  50. Sadeghpour S, Khodaee S, Rahnama M, Rahimi H, Ebrahimi D. Human APOBEC3 variations and viral infection. Viruses 2021;13:1366.
  51. Proto S, Taylor JA, Chokshi S, Navaratnam N, Naoumov NV. APOBEC and iNOS are not the main intracellular effectors of IFN-γ-mediated inactivation of hepatitis B virus replication. Antiviral Res 2008;78:260-267. https://doi.org/10.1016/j.antiviral.2008.01.006
  52. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 2004;303:1829-1829. https://doi.org/10.1126/science.1092066
  53. Nguyen DH, Hu J. Reverse transcriptase- and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J Virol 2008;82:6852-6861. https://doi.org/10.1128/JVI.00465-08
  54. Yoshio S, Sugiyama M, Shoji H, Mano Y, Mita E, Okamoto T, Matsuura Y, Okuno A, Takikawa O, Mizokami M, et al. Indoleamine-2,3-dioxygenase as an effector and an indicator of protective immune responses in patients with acute hepatitis B. Hepatology 2016;63:83-94. https://doi.org/10.1002/hep.28282
  55. Nguyen LH, Espert L, Mechti N, Wilson DM 3rd. The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 2001;40:7174-7179. https://doi.org/10.1021/bi010141t
  56. Stadler D, Kachele M, Jones AN, Hes J, Urban C, Schneider J, Xia Y, Oswald A, Nebioglu F, Bester R, et al. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 2021;22:e49568.
  57. Park YK, Lee SY, Lee AR, Kim KC, Kim K, Kim KH, Choi BS. Antiviral activity of interferon-stimulated gene 20, as a putative represor binding to hepatitis B virus enhancer II and core promoter. J Gastroenterol Hepatol 2020;35:1426-1436. https://doi.org/10.1111/jgh.14986
  58. Imam H, Kim GW, Mir SA, Khan M, Siddiqui A. Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified hepatitis B virus transcripts. PLoS Pathog 2020;16:e1008338.
  59. Leong CR, Funami K, Oshiumi H, Mengao D, Takaki H, Matsumoto M, Aly HH, Watashi K, Chayama K, Seya T. Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo. Oncotarget 2016;7:68179-68193. https://doi.org/10.18632/oncotarget.11907
  60. Liu Y, Nie H, Mao R, Mitra B, Cai D, Yan R, Guo JT, Block TM, Mechti N, Guo H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stemloop structure of viral RNA. PLoS Pathog 2017;13:e1006296.
  61. Braun E, Hotter D, Koepke L, Zech F, Gros R, Sparrer KM, Muller JA, Pfaller CK, Heusinger E, Wombacher R, et al. Guanylate-binding proteins 2 and 5 exert broad antiviral activity by inhibiting furin-mediated procesing of viral envelope proteins. Cell Reports 2019;27:2092-2104.e10. https://doi.org/10.1016/j.celrep.2019.04.063
  62. Mesageot F, Salhi S, Eon P, Rosignol JM. Proteolytic procesing of the hepatitis B virus e antigen precursor. Cleavage at two furin consensus sequences. J Biol Chem 2003;278:891-895. https://doi.org/10.1074/jbc.M207634200
  63. Yang HY, Zheng NQ, Li DM, Gu L, Peng XM. Entecavir combined with furin inhibitor simultaneously reduces hepatitis B virus replication and e antigen secretion. Virol J 2014;11:165.
  64. Wu JF, Hsu HY, Ni YH, Chen HL, Wu TC, Chang MH. Suppresion of furin by interferon-γ and the impact on hepatitis B virus antigen biosynthesis in human hepatocytes. Am J Pathol 2012;181:19-25. https://doi.org/10.1016/j.ajpath.2012.03.036
  65. Santos JC, Broz P. Sensing of invading pathogens by GBPs: at the crosroads between cell-autonomous and innate immunity. J Leukoc Biol 2018;104:729-735. https://doi.org/10.1002/JLB.4MR0118-038R
  66. Chen J, Li Y, Lai F, Wang Y, Sutter K, Dittmer U, Ye J, Zai W, Liu M, Shen F, et al. Functional comparison of interferon-α subtypes reveals potent hepatitis B virus suppresion by a concerted action of interferon-α and interferon-γ signaling. Hepatology 2021;73:486-502. https://doi.org/10.1002/hep.31282
  67. Shi H, Guan SH. Increased apoptosis in HepG2.2.15 cells with hepatitis B virus expresion by synergistic induction of interferon-γ and tumour necrosis factor-α. Liver Int 2009;29:349-355. https://doi.org/10.1111/j.1478-3231.2008.01835.x
  68. Tretina K, Park ES, Maminska A, MacMicking JD. Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease. J Exp Med 2019;216:482-500. https://doi.org/10.1084/jem.20182031
  69. Wieland S, Thimme R, Purcell RH, Chisari FV. Genomic analysis of the host response to hepatitis B virus infection. Proc Natl Acad Sci U S A 2004;101:6669-6674. https://doi.org/10.1073/pnas.0401771101
  70. Shin GC, Ahn SH, Choi HS, Kim J, Park ES, Kim DH, Kim KH. Hepatocystin contributes to interferon-mediated antiviral response to hepatitis B virus by regulating hepatocyte nuclear factor 4α. Biochim Biophys Acta 2014;1842:1648-1657. https://doi.org/10.1016/j.bbadis.2014.04.016
  71. Shin GC, Ahn SH, Choi HS, Lim KH, Choi DY, Kim KP, Kim KH. Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell. Biochim Biophys Acta 2013;1832:1569-1581. https://doi.org/10.1016/j.bbadis.2013.04.026
  72. Yu X, Mertz JE. Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4α and COUP-TF1. J Virol 2003;77:2489-2499. https://doi.org/10.1128/JVI.77.4.2489-2499.2003
  73. Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, et al. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018;9:3284.
  74. Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, Song XT, Li M. The roles of TRIMs in antiviral innate immune signaling. Front Cell Infect Microbiol 2021;11:628275.
  75. Gao B, Duan Z, Xu W, Xiong S. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 2009;50:424-433.
  76. Carreno V, Moreno A, Galiana F, Bartolome FJ. Alpha- and gamma-interferon versus alpha-interferon alone in chronic hepatitis B. A randomized controlled study. J Hepatol 1993;17:321-325. https://doi.org/10.1016/S0168-8278(05)80212-0
  77. Di Bisceglie AM, Rustgi VK, Kasianides C, Lisker-Melman M, Park Y, Waggoner JG, Hoofnagle JH. Therapy of chronic hepatitis B with recombinant human alpha and gamma interferon. Hepatology 1990;11:266-270. https://doi.org/10.1002/hep.1840110217
  78. Kakumu S, Ishikawa T, Mizokami M, Orido E, Yoshioka K, Wakita T, Yamamoto M. Treatment with human gamma interferon of chronic hepatitis B: comparative study with alpha interferon. J Med Virol 1991;35:32-37. https://doi.org/10.1002/jmv.1890350108
  79. Marcellin P, Loriot MA, Boyer N, Martinot-Peignoux M, Degott C, Degos F, Brandely M, Lenfant B, Benhamou JP. Recombinant human γ-interferon in patients with chronic active hepatitis B: pharmacokinetics, tolerance and biological effects. Hepatology 1990;12:155-158. https://doi.org/10.1002/hep.1840120124
  80. Wu YJ, Cai WM, Li Q, Liu Y, Shen H, Mertens PR, Dooley S, Weng HL. Long-term antifibrotic action of interferon-γ treatment in patients with chronic hepatitis B virus infection. Hepatobiliary Pancreat Dis Int 2011;10:151-157. https://doi.org/10.1016/S1499-3872(11)60024-6
  81. Lau JY, Lai CL, Wu PC, Chung HT, Lok AS, Lin HJ. A randomised controlled trial of recombinant interferon-gamma in Chinese patients with chronic hepatitis B virus infection. J Med Virol 1991;34:184-187. https://doi.org/10.1002/jmv.1890340310
  82. Bisett J, Eisenberg M, Gregory P, Robinson WS, Merigan TC. Recombinant fibroblast interferon and immune interferon for treating chronic hepatitis B virus infection: patients' tolerance and the effect on viral markers. J Infect Dis 1988;157:1076-1080. https://doi.org/10.1093/infdis/157.5.1076
  83. Carreno V, Mora I. Combination of recombinant interferons alpha and gamma in treatment of chronic hepatitis B. Lancet 1987;2:1086.
  84. Caselmann WH, Eisenburg J, Hofschneider PH, Koshy R. Beta- and gamma-interferon in chronic active hepatitis B. A pilot trial of short-term combination therapy. Gastroenterology 1989;96:449-455. https://doi.org/10.1016/0016-5085(89)91570-9
  85. Brunelle MN, Saboulard D, Masinet H, Lamant C, Sousan P, Brezillon N, Kremsdorf D. Inhibition of hepatitis B virus DNA replication by a thermostable interferon-γ variant. Antivir Ther 2010;15:861-869. https://doi.org/10.3851/IMP1639
  86. Cornberg M, Lok AS, Terrault NA, Zoulim F; 2019 EASL-AASLD HBV Treatment Endpoints Conference Faculty. Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. J Hepatol 2020;72:539-557. https://doi.org/10.1016/j.jhep.2019.11.003
  87. Yuan W, Huang D, Wu D, Chen Y, Ma K, Han M, Luo X, Yan W, Ning Q. Pegylated interferon-α (IFN-α) enhances the inhibitory effect of natural killer cells on regulatory T cells via IFN-γ in chronic hepatitis B. J Infect Dis 2021;224:1878-1889. https://doi.org/10.1093/infdis/jiab216
  88. Liu L, Hou J, Xu Y, Qin L, Liu W, Zhang H, Li Y, Chen M, Deng M, Zhao B, et al. PD-L1 upregulation by IFN-α/γ-mediated Stat1 suppreses anti-HBV T cell response. PLoS One 2020;15:e0228302.
  89. Zeng Z, Li L, Chen Y, Wei H, Sun R, Tian Z. Interferon-γ facilitates hepatic antiviral T cell retention for the maintenance of liver-induced systemic tolerance. J Exp Med 2016;213:1079-1093. https://doi.org/10.1084/jem.20151218
  90. Weng HL, Feng DC, Radaeva S, Kong XN, Wang L, Liu Y, Li Q, Shen H, Gao YP, Mullenbach R, et al. IFN-γ inhibits liver progenitor cell proliferation in HBV-infected patients and in 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet-fed mice. J Hepatol 2013;59:738-745. https://doi.org/10.1016/j.jhep.2013.05.041
  91. Li J, Cheng L, Jia H, Liu C, Wang S, Liu Y, Shen Y, Wu S, Meng F, Zheng B, et al. IFN-γ facilitates liver fibrogenesis by CD161+CD4+ T cells through a regenerative IL-23/IL-17 axis in chronic hepatitis B virus infection. Clin Transl Immunology 2021;10:e1353.
  92. Chen Y, Hao X, Sun R, Wei H, Tian Z. Natural killer cell-derived interferon-gamma promotes hepatocellular carcinoma through the epithelial cell adhesion molecule-epithelial-to-mesenchymal transition axis in hepatitis B virus transgenic mice. Hepatology 2019;69:1735-1750. https://doi.org/10.1002/hep.30317
  93. Zhao C, Wu X, Chen J, Qian G. The therapeutic effect of IL-21 combined with IFN-γ inducing CD4+CXCR5+CD57+T cells differentiation on hepatocellular carcinoma. J Adv Res 2021;36:89-99. https://doi.org/10.1016/j.jare.2021.05.010
  94. Wu HL, Hsiao TH, Chen PJ, Wong SH, Kao JH, Chen DS, Lu JY, Lu TP, Chen Y, Chuang EY, et al. Liver gene expresion profiles correlate with virus infection and response to interferon therapy in chronic hepatitis B patients. Sci Rep 2016;6:31349.
  95. Takagi K, Takayama T, Nagase H, Moriguchi M, Wang X, Hirayanagi K, Suzuki T, Hasegawa H, Ochiai T, Yamaguchi N, et al. High TSC22D3 and low GBP1 expresion in the liver is a risk factor for early recurrence of hepatocellular carcinoma. Exp Ther Med 2011;2:425-431. https://doi.org/10.3892/etm.2011.236
  96. Britzen-Laurent N, Lipnik K, Ocker M, Naschberger E, Schellerer VS, Croner RS, Vieth M, Waldner M, Steinberg P, Hohenadl C, et al. GBP-1 acts as a tumor suppresor in colorectal cancer cells. Carcinogenesis 2013;34:153-162. https://doi.org/10.1093/carcin/bgs310