• Title/Summary/Keyword: inlet pressure

Search Result 1,654, Processing Time 0.021 seconds

Collection Characteristics of Wet-type Multi-layered and Multi-staged Porous Plate System (습식 다층 다단 다공성 플레이트 시스템의 집진특성)

  • Yoa, Seok-Jun;Kim, Joo-Yeon
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.42-50
    • /
    • 2014
  • The main object of this study is to investigate the collection characteristics of wet-type multi-layered and multi-staged porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as water spray, inlet velocity, stage number and inlet particle concentration, etc. In results, for the present system of wet-type, the pressure drop represents 158 $mmH_2O$ higher 3% than that in dry-type at 5 stage and $v_{in}$=3.53 m/s. In case of 5 stage, $v_{in}$=3.53 m/s and water spray 250 ml/min, the collection efficiency of the present system becomes significantly higher as 99.7% comparing to that of the conventional wet-type scrubber. Additionally, for 5 stage and 250 ml/min, $SO_2$ removal efficiencies decrease with the increment of inlet velocity representing 75.0, 62.5, 50.0%, at $v_{in}$=2.12, 2.82, 3.53 m/s, respectively.

Dynamic Characteristics of the Radial Clearance Flow between Axially Oscillating Rotational Disk and Stationary Disk

  • Horiguchi, Hironori;Ueno, Yoshinori;Takahashi, Koutaro;Miyagawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • Dynamic characteristics of the clearance flow between an axially oscillating rotational disk and a stationary disk were examined by experiments and computations based on a bulk flow model. In the case without pressure fluctuations at the inlet and outlet of the clearance, parallel and contracting flow paths had an effect to stabilize the axial oscillation of the rotating disk. The enlarged flow path had an effect to destabilize the axial oscillation due to the negative damping and stiffness for outward and inward flows, respectively. It was shown that the fluid force can be decomposed into the component caused by the inlet or outlet pressure fluctuation without the axial oscillation and that due to the axial oscillation without the inlet or outlet pressure fluctuation. A method to predict the stiffness and damping coefficients is proposed for general cases when the device is combined with an arbitrary flow system.

Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle (순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.30-36
    • /
    • 2009
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity $CO_2 capture with high$ efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion to enhance cycle efficiency. Also, Some of water vapour remain not condensed at condenser outlet because cycle working fluid contains non-condensable gas, i.e., $CO_2$. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures, combustion pressures and condenser pressure. It is expected that increasing the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency. And increasing condensing pressure improves water vapour condensing rate.

Performance Characteristics of the Double-Inlet Centrifugal Blower according to the Shape of an Impeller (임펠러 형상에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an impeller. Two design variables, a number of blade and a length of chord, are introduced, and analyzed by a response surface method. Three-dimensional compressible Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. Throughout the numerical simulation of the blower, blower efficiency can be increased by reducing separation flow generating from the blade leading edge of a blade pressure surface. It is noted that recirculation flow observed inside the blade passage induces low velocity region, thus increases pressure loss. Efficiency and pressure of the optimum blower are successfully increased up to 3% and 3.9% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Comparison of Condenser Characteristics Using R407C and R22 on the Same Inlet Temperature Condition (동일한 유입온도조건에서 R407C와 R22 적용 응축기의 특성비교)

  • 김창덕;전창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.595-603
    • /
    • 2003
  • R407C is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the condensation heat transfer and pressure drop for R407C flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and refrigerant mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air has dry bulb temperature of 35$^{\circ}C$ , relative humidity of 50% and air velocity varying from 0.8 to 1.6 m/s. Experiments show that air velocity increased by 25% is needed for R407C than that of R22 for subcooling temperature of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 28.8% for R407C as compared to R22. As a consequence, in order to provide the same design condition of a condenser, the fan requires higher electric-power consumption with R407C than that with R22.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.

Exergy Analysis of Waste Energy Recovery System in Regasification Process of LNG FSRU (LNG FSRU의 재기화 공정에서 폐에너지회수시스템의 엑서지 분석)

  • Han, Seoung Hyun;Jo, Jae Ho;Kwon, Jeong-Tae;Park, Kyoungwoo;Choi, Byung Chul
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2022
  • In this study, the exergy characteristics were analyzed, according to the mass flow rate of the propane working fluid and the pressure change in the turbine inlet, for the efficient recovery of cold energy and exhaust heat by the waste energy recovery system applied to the LNG FSRU regasification process. When the turbine inlet pressure and mass flow rate of the Primary Rankine Cycle were kept constant, the exergy efficiency and the net power increased. This occurred as the turbine inlet pressure and the mass flow rate of the working fluid increased in the Secondary Rankine Cycle, respectively, and the maximum values were confirmed. In this regard, the fluctuations in the exergy rate flowing into and out of the system and the exergy rate destroyed by pumps, evaporators, turbines, and LNG heat exchangers (condensers) were examined in detail.

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

The Effect of In-Outlet Differential Pressure on a Valve Body Stress and Deformation by the Blow-by Gas Flow Characteristic in the PCV valve for Automobile (자동차용 PCV밸브내 유통특성에 의한 밸브응력 및 변형에 미치는 입출구 차압의 영향)

  • Kwon Oh-Heon;Lee Yeon-Won;Song Sang-Min;Lee Jong-Hoon;Kang Ji-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.36-41
    • /
    • 2005
  • PCV(Positive Crankcase Ventilation) valve acts as a flow control valve to get a re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. The blow-by gas of the crankcase should be eliminated or taken properly because it cause corrosion to critical parts, and contributes to increase crankcase pressure that can cause a drop in efficiency. The excessive stress and strain on the PCV valve that remove these harmful gas would be bring the difficult on the flow rate control and failure of the valve. Those condition inevitably induce the accident. Therefore, this study purpose is FEM evaluation of the stresses and deformation in the X3 PCV model according to the change of the differential pressure between inlet and outlet. From results, the maximum equivalent stresses increased linearly according to the increase of the differential pressure at the about 50mm from the inlet position and were under the yield strength of the valve. And the deformations were relatively small regardless of the in-outlet differential pressure variation.

Phase Resonance in Centrifugal Fluid Machinery -A Comparison between Pump Mode and Turbine Mode Operations and a Discussion of Mechanisms of Flow Rate Fluctuation through a Stator-

  • Yonezawa, Koichi;Toyahara, Shingo;Motoki, Shingo;Tanaka, Hiroshi;Doerfler, Peter;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Phase resonance in Francis type hydraulic turbine is studied. The phase resonance is a phenomenon that the pressure fluctuation in the penstock of hydraulic turbine installation can become very large when the pressure waves from each guide vane caused by the interaction with the runner vane reach the penstock with the same phase. Experimental and numerical studies have been carried out using a centrifugal fan. In the present study, comparisons between the pump mode and the turbine mode operations are made. The experimental and numerical results show that the rotational direction of the rotor does not affect characteristics of the pressure fluctuation but the propagation direction of the rotorstator interaction mode plays an important role. Flow rate fluctuations through the stator are examined numerically. It has been found that the blade passing flow rate fluctuation component can be evaluated by the difference of the fluctuating pressure at the inlet and the outlet of the stator. The amplitude of the blade passage component of the pressure fluctuation is greater at the stator inlet than the one at the stator outlet. The rotor-stator interaction mode component is almost identical at the inlet and the outlet of the stator. It was demonstrated that the pressure fluctuation in the volute and connecting pipe normalized by the flow rate fluctuation becomes the same for pump and turbine mode operations, and depends on the rotational direction on the interaction mode.