• Title/Summary/Keyword: inlet

Search Result 4,342, Processing Time 0.035 seconds

A Parametric Study on Inlet Duct Treatment for Improving the Operational Stability of a Centrifugal Compressor (운전안정성 향상을 위한 원심 압축기의 유입부 형상변화에 관한 연구)

  • Seo, Tae-Wan;Heo, Man-Woong;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2016
  • In present study, a parametric study of a centrifugal compressor with inlet treatment has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and unstructured grid system were used for the numerical solution. Tested parameters were related to the geometry of the inlet duct. It was found that the application of circumferentially distributed holes in the inlet duct improves operational stability of the compressor compared to that with conventional inlet duct.

Numerical Prediction of Inlet Recirculation in Pumps

  • Lipej, Andrej;Mitrusevski, Dusko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.277-286
    • /
    • 2016
  • The development of heavy-duty process pumps, usually based on various design criteria, depends on the pump's application. The most important criteria are Q-H, efficiency and NPSH characteristics. Cavitation due to inlet recirculation is not often one of the design criteria, although many problems in pump operation appear because of inlet recirculation, when the operation range is from 0.5-0.8 $Q_{opt}$. The present paper shows that steady state CFD analysis of inlet recirculation can give quite good results for the design of new hydraulic shapes, which have been developed to expand operating range and to minimize the harmful influence of recirculation at part load. In this paper, the structures of inlet recirculation are presented, as well as detailed shapes of vortices between the blades for various operating regimes, axial velocity distribution at the impeller inlet, the experimental results of NPSH and efficiency characteristics of an existing and newly designed pump.

Experimental Study on the Aerodynamic Performance of Double Inlet Sirocco Fan for a Package Air Conditioner (PAC용 양흡입 시로코홴의 공력성능에 관한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • The aerodynamic performance of double inlet sirocco fan is strongly dependent upon the design factors of impeller and scroll. In this paper, the change of scroll size was adopted to investigate the aerodynamic performances of double inlet sirocco fan and indoor PAC. Especially, a scroll expansion angle and a cut-off clearance ratio were considered to change the scroll size. In addition, the installation depth between double inlet sirocco fan and indoor PAC was considered. As a result, the total pressure efficiency of double inlet sirocco fan shows about 62%~73% according to the change of scroll expansion angles. Moreover, the flowrate performance of indoor PAC is the best at the condition of a scroll expansion angle of 8°, an installation depth of 15 mm and a cut-off clearance ratio of 8%.

Transmission Loss Analysis of Simple Expansion Chambers with Multiple Inlets and Outlets (다입력/다출력관을 갖는 확장관의 투과손실 해석)

  • 박기춘;김양한
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.807-813
    • /
    • 1998
  • Transmission loss of the simple expansion chamber with multiple inlet and outlet ports is obtained. Transfer matrices which represent the relation between the power variables(pressure and velocity) of inlets and outlets depend on the input relatons as well as the acoustic system parameters(i.e. geometry of the chamber, wall admittance, etc.). The analysis has been performed analytically, including the effects of higher order modes for the 2-inlet/1-outlet, 1-inlet/2-outlet and 2-inlet/2-outlet systems. This study yeilds that phase difference between the inlet ports can significantly increase the transmission loss in low frequency range.

  • PDF

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

Characteristics of Electrostatic Cyclone-Bag Filter with Upper Inlet (상부유입식 전기 Cyclone-Bag Filter의 특성)

  • 여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.179-190
    • /
    • 2000
  • The main object of this study was to investigate experimentally the characteristics of electrostatic cyclone-bag filter with upper tangential inlet in order to overcome the low collection efficiency for the submicron particle and high pressure drop which were main problems of general fabric bag filters. The experiment was carried out for the analysis of collection efficiency and pressure drop of electrostatic cyclone-bag filter comparing to those of fabric bag filter with various experimental parameters such as the inlet velocity(filtration velocity) and applied voltage etc. In the results the upper tangential inlet type showed higher collection efficiency for submicron particles below 2 ${\mu}{\textrm}{m}$ in diameter than that of center inlet and over 99.9% for overall collection efficiency. Pressure drop reduction ratios were shown as 40-50% for the applied voltage 0kV by centrifugal force and 70-90% for 20k V by the centrifuga and electrostatic force with the tangential inlet velocity (12-21m/s)

  • PDF

A Numerical Study on the Flow Characteristics of Side-suction Inlet Geometry for Centrifugal Pump (원심펌프 측면흡입구의 유동특성에 관한 수치해석적 연구)

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.7-12
    • /
    • 2009
  • This paper presents a numerical study on the design of side-suction inlet geometry which is used for multi stage centrifugal pumps or inline centrifugal pumps. In order to achieve an optimum inlet geometry and to explain the interactions between the different geometric configurations, the three dimensional computational fluid dynamics and the design of experiment methods have been applied. Geometric design variables describing the cross sectional area distribution through the inlet were selected. The objective functions are defined as the non-uniformity of the velocity distribution at the passage exit which is just in front of the impeller eyes. From the 2k factorial design results, the most important design variable was found and the performance of the side suction inlet was improved compared to the base line shape.

Study on mixing characteristics of T-type micro channel (미소 T 채널의 혼합 특성에 관한 연구)

  • Lee, Sang-Hyun;Ahn, Cheol-O;Seo, In-Soo;Lee, Sang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2495-2500
    • /
    • 2008
  • We simulated the mixing characteristics in micro T-channel using Lattice Boltzmann Method. We studied the relation a mixing length and pressure-drop due to inlet and outlet ration in Reynolds number 0.5, Peclet number 500 and Schmidt 1000. The ratio of a down-inlet to up-inlet was $0.5{\sim}1.5$ times, up-inlet to outlet was $1{\sim}3$ times and outlet length was 250 times to up-inlet. The mixing length decrease linearly as outlet ratio decreased, and pressure-drip increase non-linearly. Initial stage of micro channel mixture was fast by down-inlet ratio, however, the mixing length is not influence.

  • PDF

Effect of Inlet Direction on the Refrigerant Distribution in an Aluminum Flat-Tube Heat Exchanger

  • Kim, Nae-Hyun;Kim, Do-Young;Byun, Ho-Won;Choi, Yong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.130-136
    • /
    • 2008
  • The refrigerant R-134a flow distributions are experimentally studied for a round header/ten flat tube test section simulating a brazed aluminum heat exchanger. Three different inlet orientations(parallel, normal, vertical) were investigated. Tests were conducted with downward flow for the mass flux from 70 to 130 $kg/m^2s$ and quality from 0.2 to 0.6. In the test section, tubes were flush-mounted with no protrusion into the header. It is shown that normal and vertical inlet yielded approximately similar flow distribution. At high mass fluxes or high qualities, however, slightly better results were obtained for normal inlet configuration. The flow distribution was worst for the parallel inlet configuration. Possible explanation is provided based on flow visualization results.

A Two-Dimensional Numerical Analysis of the Unstart Process in an Inlet/Isolator Model (흡입구/격리부 모델의 Unstart 과정 2차원 수치 해석)

  • Shin, Hocheol;Park, Soohyung;Byun, Yunghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.341-345
    • /
    • 2017
  • In this study, the Inlet/Isolator model experiments performed at Texas University were performed by 2-dimensional RANS computerized analysis. First, supersonic flow conditions were analyzed and compared with experimental surface pressure results, and the flow structure was analyzed by confirming Mach number distribution and numerical shadowgraph. Then, the inlet unstart condition was given by changing the back pressure, and the URANS analysis was performed to confirm the progress of inlet unstart.

  • PDF