• 제목/요약/키워드: inkjet printing, screen printing

검색결과 14건 처리시간 0.025초

Printed flexible OTFT backplane for electrophoretic displays

  • Ryu, Gi-Seong;Lee, Myung-Won;Song, Chung-Kun
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.213-217
    • /
    • 2011
  • Printing technologies were applied to fabricate a flexible organic thin-film transistor (OTFT) backplane for electrophoretic displays (EPDs). Various printing processes were adopted to maximize the figures of each layer of OTFT: screen printing combined with reverse offset printing for the gate electrodes and scan bus lines with Ag ink, inkjet for the source/drain electrodes with glycerol-doped Poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) (PEDOT:PSS), inkjet for the semiconductor layer with Triisopropylsilylethynyl (TIPS)-pentacene, and screen printing for the pixel electrodes with Ag paste. A mobility of $0.44cm^2/V$ s was obtained, with an average standard deviation of 20%, from the 36 OTFTs taken from different backplane locations, which indicates high uniformity. An EPD laminated on an OTFT backplane with $190{\times}152$ pixels on an 8-in panel was successfully operated by displaying some patterns.

잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성 (Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology)

  • 박성준;서상훈;정재우
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

Printing Technology for Bulk-Heterojunction Organic Photovoltaic Cells: Inkjet and Aerosol-Jet Printing

  • 윤성철;정재욱;김동환;임종선;이창진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.11.1-11.1
    • /
    • 2009
  • Bulk-heterojunction type organic photovoltaic cells have been remarkably improved due to the development of efficient donors and post treatment process. However, most of researchers have studied on the OPVs using spin-coating method during the past decade. To commercialize the OPVs, much cheaper printing process should be developed such as inkjet, screen, gravure, and so on. In this study, we have focused on the development of printing technology using Inkjet and Aerosol-Jet printing, which can offer reliable device performance. Finally, 4.5% power conversion efficiency can be achieved under AM 1.5 1sun light illumination, which is the highest value in printed OPVs. We reveal that substantial improvement can be realized by highly efficient bulk heterojunction after printing. Also, we can confirm these two printing methods are promising fabrication methods for large area OPVs. Also, flexible and large area (18 cm2) printed OPVs have been fabricated and device performance will be discussed in detail.

  • PDF

Printing Technologies for the Gate and Source/Drain Electrodes of OTFTs

  • Lee, Myung-Won;Lee, Mi-Young;Song, Chung-Kun
    • Journal of Information Display
    • /
    • 제10권3호
    • /
    • pp.131-136
    • /
    • 2009
  • This is a report on the fabrication of a flexible OTFT backplane for electrophoretic display (EPD) using a printing technology. A practical printing technology for a polycarbonate substrate was developed by combining the conventional screen and inkjet printing technologies with the wet etching and oxygen plasma processes. For the gate electrode, the screen printing technology with Ag ink was developed to define the minimum line width of ${\sim}5{\mu}m$ and the thickness of ${\sim}70nm$ with the resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, which are suitable for displays with SVGA resolution. For the source and drain (S/D) electrodes, PEDOT:PSS, whose conductivity was drastically enhanced to 450 S/cm by adding 10 wt% glycerol, was adopted. In addition, the modified PEDOT:PSS could be neatly confined in the specific S/D electrode area that had been pretreated with oxygen. The OTFTs that made use of the developed printing technology produced a mobility of ${\sim}0.13cm^2/Vs.ec$ and an on/off current ratio of ${\sim}10^6$, which are comparable to those using thermally evaporated Au for the S/D electrode.

Properties of Inkjet and Screen Printed Circuits with Substrate Treatments

  • 이민수;김용욱;김영훈;유의덕
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.4.1-4.1
    • /
    • 2011
  • Recently, circuit printing technology has been considered as a promising alternative to conventional PCB fabrication, for it can greatly reduce the manufacturing costs. Even though printed circuit has many advantages over typical subtractive technology such as fewer processes, it has some disadvantages. The major problems are low adhesion and poor resolution. Efforts to overcome these problems have been mainly focused on ink developments with a limited success. And surface treatments showed some improvements. Therefore, various plasma treatments and primer coatings on plastic substrates have been tested. Plasma treatments using hydrocarbon gases including methane and propane improved the pattern quality of the inkjet printed circuit, which are further improved upon heating of substrate. On the other hand, there is little effect on the adhesion, which is improved only by a special primer coating. The adhesion of inkjet printed circuit has been increased more than 10 times upon treatment. As for the screen printed circuits, the overall effects are less significant since there is some organic binder in the ink. Nonetheless, the treatment has strong positive effects on pattern quality and adhesion. The adhesion of 1 kgf/cm2, which is comparable with those of the conventional PCB circuits, is possible through primer coating for both screen and inkjet printed circuits. The resulting circuit also showed good thermal, mechanical and electrical properties.

  • PDF

Screen-printed Source and Drain Electrodes for Inkjet-processed Zinc-tin-oxide Thin-film Transistor

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.271-274
    • /
    • 2011
  • Screen-printed source and drain electrodes were used for a spin-coated and inkjet-processed zinc-tin oxide (ZTO) TFTs for the first time. Source and drain were silver nanoparticles. Channel length was patterned using screen printing technology. Different silver nanoinks and process parameters were tested to find optimal source and drain contacts Relatively good electrical properties of a screen-printed inkjet-processed oxide TFT were obtained as follows; a mobility of 1.20 $cm^2$/Vs, an on-off current ratio of $10^6$, a Vth of 5.4 V and a subthreshold swing of 1.5 V/dec.

Development of MEMS based Piezoelectric Inkjet Print Head and Its Applications

  • Shin, Seung-Joo;Lee, Hwa-Sun;Lee, Tae-Kyung;Kim, Sung-Jin
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.20.2-20.2
    • /
    • 2010
  • Recently inkjet printing technology has been developed in the areas of low cost fabrication in environmentally friendly manufacturing processes. Although inkjet printing requires the interdisciplinary researches including development of materials, manufacturing processes and printing equipment and peripherals, manufacturing a printhead is still core of inkjet technology. In this study, a piezoelectric driven DOD (drop on demand) inkjet printhead has been fabricated on three layers of the silicon wafer in MEMS Technology because of its chemical resistance to industrial inks, strong mechanical properties and dimensional accuracy to meet the drop volume uniformity in printed electronics and display industries. The flow passage, filter and nozzles are precisely etched on the layers of the silicon wafers and assembled through silicon fusion bonding without additional adhesives. The piezoelectric is screen-printed on the top the pressure chamber and the nozzle plate surface is treated with non-wetting coating for jetting fluids. Printheads with nozzle number of 16 to 256 have been developed to get the drop volume range from 5 pL to 80 pL in various industrial applications. Currently our printheads are successfully utilized to fabricating color-filters and PI alignment layers in LCD Flat Panel Display and legend marking for PCB in Samsung Electronics.

  • PDF

잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발 (Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board)

  • 서상훈;이로운;윤관수;정재우;이희조;육종관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

패드 인쇄 기법을 이용하여 곡면상에 구현된 PEMS 디바이스 (Pad Printed PEMS Device Printed on a Curved Surface)

  • 이택민;최현철;노재호;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1087-1090
    • /
    • 2008
  • This paper presents the electro-luminescence (EL) display lamp which is patterned on a curved surface by the pad printing method. The printing methods, including the gravure, screen, flexo, inkjet, and pad printing, have an advantage of one-step direct patterning. However, in general, the printing and semi-conductor process, except pad printing method, cannot be applied for patterning on a curved surface. Thus, in this paper, we used pad printing method for patterning an EL display lamp on a curved surface. The EL display lamp consists of 5 layers: Bottom electrode; Dielectric layer; Phosphor; Transparent electrode; Bus electrode. Finally, we printed EL display lamp on a dish, which has a radius of curvature 80mm. The EL display lamp was driven at AC 200V of 1kHz.

  • PDF

인쇄전자 산업시장의 현황과 전망 (The present status and future aspects of the market for printed electronics)

  • 박정용;박재수
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.263-272
    • /
    • 2013
  • 인쇄전자는 다양한 기판에 기능적 소자를 프린팅한다. 인쇄방법은 스크린 인쇄, 플렉소그라피, 오프셋 리소그라피와 잉크젯 방식을 통해 적정한 패턴을 만든다. 인쇄기법을 응용하여 활용하기 때문에 전통적인 극소전자공학에 비하여 생산과정이 간단하고 비용 또한 저렴하다. 잉크젯 및 R2R(Roll to Roll)기술이 발전을 거듭해 왔기 때문에 디스플레이에서 태양전지의 제조까지 그 기술이 활용된다. IDTech(2010)에 의하면, 전자인쇄시장은 2010년에 10.99(억달러)에서 2020년 55.10(억달러)로 커질 것이며, 2030년에는 반도체산업의 규모보다 큰 3,000억 달러가 될 것으로 전망하고 있다. 센서, 배터리, 광전지, 메모리, 스마트카드 시장이 확대되는 등 조명에서 디스플레이까지 인쇄전자산업시장은 성장할 것이다.