• Title/Summary/Keyword: injection volume

Search Result 949, Processing Time 0.024 seconds

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results - (사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 -)

  • Lee, Young-Bok;Kwon, Tai-Hun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.

The Change of Facial Contouring after Unilateral Injection of Botulinum Toxin in Unilateral Masseter Hypertrophy Patients (편측성 교근비대 환자에서 편측 보툴리눔 독소 주사 후 안모의 변화)

  • Cha, Yu-Rim;Kim, Young-Gun;Kim, Ji-Hyun;Shim, Young-Joo;Kim, Seong-Taek
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.247-251
    • /
    • 2011
  • Botulinum toxin type A (BoNT-A) is used for treating bilateral masseter hypertrophy since 1994. Recently there have been more clinical studies in this area, with some authors reporting that BoNT-A can reduce the size of the masseter muscle, as documented by photography, ultrasonography, computed tomography, and 3D(three dimensional) laser scan. However, earlier studies were only for bilateral masseter hypertrophy cases, not for unilateral masseter hypertrophy cases. The aim of this study was to use 3D laser scanning to evaluate changes in the external facial contour induced by unilateral BoNT-A injection. BoNT-A was injected into hypertrophic masseter muscle unilaterally in 10 patients with asymmetric masseter hypertrophy. The clinical effects of unilaterally injected BoNT-A were evaluated before the injection and 4, 8, and 12weeks after the injection using 3D laser scan. And the mean values of both sides (injection and non-injection sides) were compared with. At injection side, mean values of the volume and the bulkiest height at each time point diminished significantly between pre-injection and 4, 8, and 12weeks post-injection. At non-injection side, in contrast, mean values of the volume and the bulkiest height diminished also but less than that of injected side, and there was no statistical significance. In this limited study, we concluded that the unilaterally BoNT-A injection side showed greater mean values of the reduction of muscle volume than non-injection side at 4, 8, and 12 weeks after the injection.

A Comparison of the Spread Level of the Cervical Epidural Block in Terms of Volume (경부 경막외 차단 시 약물의 용량에 따른 분포 양상 비교)

  • Jo, Dae hyun;Kim, Myoung hee;Ahn, Sun Yeon;Park, Sa Hyun;Lee, Kang Chang
    • The Korean Journal of Pain
    • /
    • v.20 no.1
    • /
    • pp.46-49
    • /
    • 2007
  • Background: Cervical epidural injection, performed via the interlaminar approach, represents a useful interventional pain management procedure indicated in patients with a cervical herniated disk. Due to thedecreased epidural space in the cervical region, cervical epidural injections may result in potentially serious complications, especially during a large volume injection. Methods: Thirty-four patients with neck pain due to a cervical herniated disk that were referred to the pain clinic for cervical epidural steroid injection were randomized into two groups. One group received a cervical epidural injection of 4 ml drug and the other group received 2 ml drug. The injected mixture included triamcinolon, ropivacaine and omnipaque. Spread levels of the drug after injection were estimated with the use of C-arm fluoroscopy. Results: Spread levels to the cephalad for patients in the two groups were $4.88{\pm}0.78segments$ and $4.53{\pm}0.49segments$, respectively. Spread levels to the caudad for patients in the two groups were $4.59{\pm}0.93segments$ and $4.47{\pm}0.51segments$, respectively. The results showed no significant difference in the spread level between the two groups. Conclusions: Use of a small volume of drug (2 ml) can provide a sufficient spread level of the injected drug that is desirable for patients with a cervical herniated disk.

A Study of Influencing Factors in the Effectiveness of Vascular and Hepatic Parenchyma Enhancement During Intravenous Injection of Contrast Medium (경정맥 조영제 주입시 혈관 및 간실질의 조영증강에 영향을 미치는 외부적 인자에 관한 연구)

  • Han Dong-Hyun;Chang Kun-Jo
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.30 no.1
    • /
    • pp.131-142
    • /
    • 2004
  • In this study, when intravenous contrast medium was injected in spiral CT study, the effects of injection volume, injection rate, injection mode, location and lumen of IV catheter on enhancement of contrast medium in aorta, portal vein and liver parenchym

  • PDF

Repeated injections of botulinum toxin into the masseter muscle induce bony changes in human adults: A longitudinal study

  • Lee, Hwa-Jin;Kim, Sung-Jin;Lee, Kee-Joon;Yu, Hyung-Seog;Baik, Hyoung-Seon
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.222-228
    • /
    • 2017
  • Objective: To evaluate soft- and hard-tissue changes in the mandibular angle area after the administration of botulinum toxin type A (BoNT-A) injection to patients with masseteric hypertrophy by using three-dimensional cone-beam computed tomography (3D-CBCT). Methods: Twenty volunteers were randomly divided into two groups of 10 patients. Patients in group I received a single BoNT-A injection in both masseter muscles, while those in group II received two BoNT-A injections in each masseter muscle, with the second injection being administered 4 months after the first one. In both groups, 3D-CBCT was performed before the first injection and 6 months after the first injection. Results: Masseter muscle thicknesses and cross-sectional areas were significantly reduced in both groups, but the reductions were significantly more substantial in group II than in group I. The intergonial width of the mandibular angle area did not change significantly in either group. However, the bone volume of the mandibular gonial angle area was more significantly reduced in group II than in group I. Conclusions: The repeated administration of BoNT-A injections may induce bone volume changes in the mandibular angle area.

A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition (정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF

Laboratory Test for the Performance of Grouting under Hydrostatic Pressure (정수압을 고려한 그라우팅의 성능에 대한 실험적 연구)

  • Jun, Kyoung-Jea;Oh, Myounghak;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.49-58
    • /
    • 2017
  • Grouting for soil improvement has generally been applied to the depth over water table. Recently, it is needed to develop the grouting technique for soils under greater static water pressure or greater overburden pressure in constructions such as deep excavation or harbour deepening. In this study, a laboratory apparatus was developed to control the injection pressure, load pressure, and hydrostatic pressure. A series of experiments were performed with various degrees of hydrostatic pressure using the developed equipment. As a result, injected volume increase as injection pressure increase, while the volume significantly decreased under hydrostatic pressure. Larger volume of grout bulb was shown in soils with larger granular and pore size based on the comparison result of volume changes with respect to the amount of grouting injection.

Numerical Simulations of the Injection Pressure Effect on the Flow Fields and the Spray Characteristics in Direct Injection Engine (직접분사엔진의 분사압력 변화에 따른 유동장 및 분무특성에 대한 수치해석적 연구)

  • 양희천;정연태;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2339-2358
    • /
    • 1993
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of injection pressure effects on the characteristics of gas flow fields and sprays were preformed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k-.epsilon. model which included the compressibility effects due to the compression/expansion of piston was used. The results of the numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of the spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during the fuel injection periods. It was found that as the injection pressure increased, the evaporation rate of droplets was decreased due to the narrow width of spray and the increased number of droplets impinged on the bottom of the piston bowl.